

    
      
          
            
  
The GYRE Stellar Oscillation Code

GYRE is a stellar oscillation code. Given an input stellar model,
GYRE calculates the eigenfrequencies and eigenfunctions for the normal
oscillation modes of the model. These data can be put to a variety of
uses; the most common is to compare them against observed oscillation
frequencies of a star, allowing constraints on the star’s fundamental
parameters (mass, radius, etc.)  to be established — the discipline
of asteroseismology.

GYRE also supports other, related kinds of calculation. One example is
evaluating the response of a star to tidal disturbances produced by an
orbiting companion; because this is an instance of forced stellar
oscillations, similar numerical techniques can be brought to bear.
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Preliminaries


Intended Audience

This manual is aimed at a broad audience — whether you’re a GYRE
novice or a seasoned veteran, it provides you with the information
you’ll need to get the most out of GYRE. However, it does presume some
experience with Unix command-line environments, and likewise some
basic familiarity with the subject of stellar oscillations. If you
need the former, then the Internet is your oyster; and for the latter,
we recommend the following online resources:


	Jørgen Christensen-Dalsgaard’s Lecture Notes on Stellar Oscillations [https://users-phys.au.dk/jcd/oscilnotes/Lecture_Notes_on_Stellar_Oscillations.pdf];


	Gerald Handler’s Asteroseismology [https://arxiv.org/pdf/1205.6407.pdf] article.






Obtaining GYRE

The source code for GYRE is hosted in the https://github.com/rhdtownsend/gyre git
repository on GitHub [https://github.com/]. GYRE is free software: you can
redistribute it and/or modify it under the terms of the GNU General
Public License [http://www.gnu.org/licenses/gpl-3.0.html] as published
by the Free Software Foundation [https://www.fsf.org/], version 3.



Citing GYRE

If you use GYRE in your research, please cite one or more of the
relevant ‘instrument’ papers:


	Townsend & Teitler (2013) [https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.3406T/abstract] describes the basic operation of the code;


	Townsend et al. (2018) [https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..879T/abstract] outlines capabilities for non-adiabatic oscillation calculations;


	Goldstein & Townsend (2020) [https://ui.adsabs.harvard.edu/abs/2020ApJ...899..116G/abstract] describes the contour method for finding
non-adiabatic modes;


	Sun et al. (2023) [https://ui.adsabs.harvard.edu/abs/2023ApJ...945...43S/abstract] introduces the gyre_tides frontend for evaluating tidal responses.




If you find yourself using GYRE on a regular basis, you might consider
contributing to the project to ensure its long-term success. Options include


	contributing code to the project (e.g., via GitHub pull requests), to
extend GYRE’s capabilities;


	contributing documentation and tutorials to the project, to make GYRE more user-friendly;


	inviting the GYRE team to be co-authors on relevant papers;


	inviting the GYRE team to be co-investigators on relevant grant applications.






Development Team

GYRE remains under active development by the following team:


	Rich Townsend [http://www.astro.wisc.edu/~townsend] (University of Wisconsin-Madison); project leader


	Warrick Ball [https://www.birmingham.ac.uk/staff/profiles/physics/ball-warrick.aspx] (University of Birmingham)


	Earl Bellinger [https://earlbellinger.com/] (MPIA Garching)


	Zhao Guo (Cambridge University)


	Mathias Michielsen (KU-Leuven)


	Joel Ong (University of Hawaii-Manoa)


	Jarret Rosenberg [https://www.physics.wisc.edu/directory/rosenberg-jarrett/] (University of Wisconsin-Madison)


	Meng Sun (Northwestern University)


	Vincent Vanlaer (KU-Leuven)




Former developers include:


	Jacqueline Goldstein (MIT)


	Aaron Lopez




Also, the following people have made valuable contributions toward testing GYRE:


	Siemen Burssens (KU Leuven)


	Timothy Van Reeth (KU Leven)






Related Links


	The GYRE discussion forums [http://www.astro.wisc.edu/~townsend/gyre-forums/], the place to post
feature requests and bug reports (don’t send emails!).


	The MESA Software Development Kit (SDK) [http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk], which
provides the compilers and supporting libraries needed to build
GYRE.


	The MESA Stellar Evolution Code [http://mesa.sourceforge.net/], which can generate
stellar models readable by GYRE.






Acknowledgments
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	NSF awards AST-0908688, AST-0904607, ACI-1339606, ACI-1663696, and AST-1716436;


	NASA awards NNX14AB55G, NNX16AB97G, and 80NSSC20K0515.




GYRE has also benefited greatly from contributions (code, bug
reports, feature requests) from the academic community. Thanks, folks!





            

          

      

      

    

  

    
      
          
            
  
Quick Start

To get started with GYRE, follow these five simple steps:


	install the MESA Software Development Kit [http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk];


	download the GYRE source code [https://github.com/rhdtownsend/gyre/releases/download/v7.1/gyre-7.1.tar.gz];


	unpack the source code using the tar utility;


	set the GYRE_DIR environment variable to point to the
newly created source directory;


	compile GYRE using the command make -C $GYRE_DIR.




For a more in-depth installation guide that covers alternative
use-cases, refer to the Installation chapter. If the code
doesn’t compile properly, consult the Troubleshooting
chapter. Otherwise, proceed to the next chapter where you’ll put
together your first GYRE calculation.




            

          

      

      

    

  

    
      
          
            
  
Example Walkthrough

This chapter provides a walkthrough of a example GYRE project, to
illustrate the typical steps involved. For this example, we’ll use
gyre (the frontend focused on stellar
oscillations) to find eigenfrequencies and eigenfunctions of dipole
and quadrupole gravity modes for a MESA model of slowly pulsating B
(SPB) star.


Making a Place to Work

When starting a new project, it’s a good idea to create a dedicated
work directory to contain the various input and output files that gyre
operates on. These commands will make a new directory beneath your
home directory with the name work, and then set this directory
as the current working directory:

mkdir ~/work
cd ~/work





Grabbing a Stellar Model

The next step is to grab the stellar model. There are a number of
example models provided in the $GYRE_DIR/models directory;
the following commands will copy a MESA model for a \(5\,\Msun\)
SPB star into your work directory:

cp $GYRE_DIR/models/mesa/spb/spb.mesa .





Assembling a Namelist File

Now comes the fun part: assembling an input file containing the various
parameters which control a gyre run. Using a text editor, create the
file gyre.in in your work directory with the following
content cut-and-pasted in:

&constants
/

&model
  model_type = 'EVOL'  ! Obtain stellar structure from an evolutionary model
  file = 'spb.mesa'    ! File name of the evolutionary model
  file_format = 'MESA' ! File format of the evolutionary model
/

&mode
  l = 1 ! Harmonic degree
/

&mode
  l = 2 ! Harmonic degree
/

&osc
  outer_bound = 'VACUUM' ! Assume the density vanishes at the stellar surface
/

&rot
/

&num
  diff_scheme = 'COLLOC_GL4' ! 4th-order collocation scheme for difference equations
/

&scan
  grid_type = 'INVERSE' ! Scan grid uniform in inverse frequency
  freq_min = 0.5        ! Minimum frequency to scan from
  freq_max = 1.5        ! Maximum frequency to scan to
  n_freq = 100          ! Number of frequency points in scan
/

&grid
  w_osc = 10 ! Oscillatory region weight parameter
  w_exp = 2  ! Exponential region weight parameter
  w_ctr = 10 ! Central region weight parameter
/


&ad_output
  summary_file = 'summary.h5'                         ! File name for summary file
  summary_item_list = 'l,n_pg,freq,freq_units,E_norm' ! Items to appear in summary file
  detail_template = 'detail.l%l.n%n.h5'        	      ! File name template for detail files
  detail_item_list = 'l,n_pg,omega,x,xi_r,
                      xi_h,c_1,As,V_2,Gamma_1' 	      ! Items to appear in detail files
  freq_units = 'CYC_PER_DAY'                   	      ! Units of freq output items
/

&nad_output
/





This file is in namelist format, containing multiple namelist
groups. Detailed information on the groups can be found in the
Namelist Input Files chapter; for now, let’s just focus on some
of the more-important aspects of the file above:


	the &constants namelist group is empty, telling gyre to use default
values for fundamental constants;


	the &model namelist group tells gyre to read an evolutionary
model, in MESA format, from the file
spb.mesa;


	the two &mode namelist groups tells gyre to search first for dipole (\(\ell=1\)) and then
quadrupole (\(\ell=2\)) modes;


	the &osc namelist group tells gyre to assume,
when setting up the outer boundary conditions in the oscillation
equations, that the density vanishes at the stellar surface;


	the &scan namelist group tells gyre to scan a region of
dimensionless angular frequency space typically occupied by gravity
modes;


	the &grid namelist group tells gyre how to refine the model
spatial grid;


	the &ad_output namelist group tells gyre what adiabatic data
to write to which output files; summary data to the file
summary.h5, and individual mode data to files having the
prefix mode.;


	the &nad_output namelist group is empty, telling gyre not to
write any non-adiabatic data.






Running gyre

With the hard work done, it’s now trivial to run gyre:

$GYRE_DIR/bin/gyre gyre.in



As the frontend runs (on multiple cores, if you have a multi-core machine;
see the FAQ for more details), it will print lots of data
to the screen. Let’s break down this output, chunk by chunk.

First, gyre prints out its version number, tells us (in
OpenMP threads) how many cores it is running on, and indicates which
file it is reading parameters from (here, gyre.in):

gyre [master]
-------------

OpenMP Threads   : 4
Input filename   : gyre.in





Next, gyre loads the stellar model from the file
spb.mesa. This model comprises 1814 points and extends from
the surface all the way to the center (which is why gyre decides not
to add a central point).

Model Init
----------

Reading from MESA file
   File name spb.mesa
   File version 1.00
   Read 1814 points
   No need to add central point





gyre then prepares to search for modes with harmonic degree
\(\ell=1\) and azimuthal order \(m=0\) (not specified in
gyre.in, but assumed by default), by building a frequency grid
and a spatial grid:

Mode Search
-----------

Mode parameters
   l : 1
   m : 0

Building frequency grid (REAL axis)
   added scan interval :  0.5000E+00 ->  0.1500E+01 (100 points, INVERSE)

Building spatial grid
   Scaffold grid from model
   Refined 0 subinterval(s) in iteration 1
   Final grid has 1 segment(s) and 1814 point(s):
      Segment 1 : x range 0.0000 -> 1.0000 (1 -> 1814)





(The concepts of spatial and frequency grids are explored in greater
detail in the Numerical Methods and Understanding Grids
chapters). Next, gyre attempts to bracket roots of the discriminant
function (again, see the Numerical Methods chapter) by
searching for changes in its sign:

Starting search (adiabatic)

Evaluating discriminant
  Time elapsed :     0.886 s





Finally, for each bracket found gyre uses a root solver to
converge to the eigenfrequency. Each row of output here corresponds to
a mode that gyre has successfully found:

Root Solving
   l    m    n_pg    n_p    n_g       Re(omega)       Im(omega)        chi n_iter
   1    0      -9      0      9  0.50907836E+00  0.00000000E+00 0.6678E-14      7
   1    0      -8      0      8  0.58398491E+00  0.00000000E+00 0.1352E-13      6
   1    0      -7      0      7  0.66078111E+00  0.00000000E+00 0.1666E-13      7
   1    0      -6      0      6  0.73734087E+00  0.00000000E+00 0.3141E-13      6
   1    0      -5      0      5  0.89820448E+00  0.00000000E+00 0.1363E-13      6
   1    0      -4      0      4  0.11322842E+01  0.00000000E+00 0.6270E-13      7
   1    0      -3      0      3  0.13377876E+01  0.00000000E+00 0.6789E-13      6
  Time elapsed :      0.382 s





The columns appearing are as follows:


	l
	harmonic degree \(\ell\)



	m
	azimuthal order \(m\)



	n_pg
	radial order \(n\) (in the Eckart-Osaki-Scuflaire [https://ui.adsabs.harvard.edu/abs/1974A&A....36..107S/abstract]-Takata [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..893T/abstract] scheme)



	n_p
	acoustic-wave winding number \(n_{\rm p}\)



	n_g
	gravity-wave winding number \(n_{\rm g}\)



	Re(omega)
	real part of dimensionless eigenfrequency \(\omega\)



	Im(omega)
	imaginary part of dimensionless eigenfrequency \(\omega\) (zero
here because we’ve performed an adiabatic calculation)



	chi
	convergence parameter



	n_iter
	number of iterations required for convergence





These values are printed to screen primarily to give an idea of
gyre’s progress. Some things to watch out for:


	The convergence parameter chi, defined as the ratio of
discriminant values before and after the root finding, should small
(on the order of 1E-9 to 1E-15). If it is significantly larger than
this, the mode may not be properly converged; and if it is
significantly smaller than this, there may be numerical issues with
the discretization scheme.


	The number of iterations n_iter should be moderate; values above
20 or so indicate that gyre is having problems converging.


	The mode radial order n_pg should be
monotonic-increasing. Departures from this behavior can happen for a
number of reasons, that are discussed in the Troubleshooting
chapter.




After processing the dipole modes, gyre repeats the search steps for
the quadrupole modes. Once the overall run is complete, a number of
output files are written:


	A summary file with the name summary.h5


	For each mode found, a detail file with the name
detail.lL.nN.h5, where L and N are
the harmonic degree and radial order of the mode, respectively.




The Output Files chapter discusses how to read and analyze
these files.





            

          

      

      

    

  

    
      
          
            
  
Frontends

This chapter summarizes the frontends provided by GYRE — the
executables programs that users run to perform calculations. Although the
Example Walkthrough chapter focuses on the gyre frontend,
there are others available focused on different kinds of task.



	gyre

	gyre_tides








            

          

      

      

    

  

    
      
          
            
  
gyre

[image: Flow of execution in the gyre frontend.]The gyre frontend calculates the free-oscillation
modes of a stellar model. The general flow of execution is outlined in
the chart to the right. After reading the namelist input file and the model,
gyre loops over &mode namelist groups,
processing each in turn.

For a given group, gyre searches over a range of
oscillation frequencies for modes with a specific harmonic degree
\(\ell\) and azimuthal order \(m\). With each mode found, the
eigenfrequency, eigenfunctions and other data are optionally written
to a detail file.  At the end of the run,
response data from all modes found (across all &mode groups)
are optionally written to a summary file.

The table below lists which namelist groups, and in what number,
should appear in namelist input files for gyre.








	Description

	Namelist group name

	Count





	Constants

	&constants

	1



	Grid Parameters

	&grid

	\(\geq 1\)[1]



	Mode Parameters

	&mode

	\(\geq 1\)



	Stellar Model Parameters

	&model

	1



	Numerical Parameters

	&num

	\(\geq 1\)[1]



	Oscillation Parameters

	&osc

	\(\geq 1\)[1]



	Output Parameters

	&ad_output

	1



	
	&nad_output

	1



	Rotation Parameters

	&rot

	\(\geq 1\)[1]



	Frequency Scan Parameters

	&scan

	\(\geq 1\)






Footnotes



[1]
(1,2,3,4)
While the input file can contain one or more of the
indicated namelist group, only the last (tag-matching) one is used.






            

          

      

      

    

  

    
      
          
            
  
gyre_tides

[image: Flow of execution in the gyre_tides frontend.]The gyre_tides frontend calculates the response of
a stellar model to tidal forcing by a orbiting point-mass
companion. The general flow of execution is outlined in the chart to
the right. After reading the namelist input file and the model,
gyre_tides loops over &tide namelist groups,
processing each in turn.

For a given group, gyre_tides solves for the response of
the star to the superposition of partial tidal potentials
\(\PhiTlmk\) (see the Tidal Effects section). The response
wavefunctions and other data associated with an individual partial
potential are optionally written to a detail file.  At the end of the run, response data from all
partial potentials (across all &tide groups) are optionally
written to a summary file.

The table below lists which namelist groups, and in what number,
should appear in namelist input files for gyre_tides.








	Description

	Namelist group name

	Number





	Constants

	&constants

	1



	Grid Parameters

	&grid

	\(\geq 1\)[1]



	Stellar Model Parameters

	&model

	1



	Numerical Parameters

	&num

	\(\geq 1\)[1]



	Orbital Parameters

	&orbit

	\(\geq 1\)[1]



	Oscillation Parameters

	&osc

	\(\geq 1\)[1]



	Output Parameters

	&tides_output

	1



	Rotation Parameters

	&rot

	\(\geq 1\)[1]



	Tidal Parameters

	&tide

	\(\geq 1\)






Footnotes



[1]
(1,2,3,4,5)
While the input file can contain one or more of the
indicated namelist group, only the last (tag-matching) one is used.






            

          

      

      

    

  

    
      
          
            
  
Numerical Methods

This chapter explains the numerical methods used by the
gyre frontend to solve the oscillation equations (similar
approaches are followed in other frontends). Although it aims to be user-friendly, gyre
is nevertheless a complex piece of software; thus, getting it to
produce the ‘best’ results requires some degree of insight into the
algorithms it uses to calculate mode eigenfrequencies and
eigenfunctions.



	The Stretched String Problem
	Analytic Solution

	Separation

	Discretization

	Linear System

	Scanning for Eigenfrequencies

	Eigenfunction Reconstruction





	From Stretched String to gyre
	Separation

	Discretization

	Linear System

	Scanning for Eigenfrequencies





	Limitations of the Numerical Method
	Insufficient Spatial Resolution

	Insufficient Frequency Resolution












            

          

      

      

    

  

    
      
          
            
  
The Stretched String Problem

We’ll start our discussion of numerical methods by considering the
problem of finding normal-mode eigenfrequencies and eigenfunctions for
waves on a stretched string clamped at both ends. Let the string have
mass per unit length \(\rho\) and tension \(T\); then, the
wave equation describing the transverse string displacement
\(y(x,t)\) at spatial position \(x\) and time \(t\) is


\[\npderiv{y}{x}{2} = \frac{1}{c^{2}} \npderiv{y}{t}{2},\]

with \(c \equiv (T/\rho)^{1/2}\). If the string is clamped at
\(x=0\) and \(x=L\), then the wave equation together with the boundary conditions


\[y(0,t) = 0 \qquad
y(L,t) = 0\]

comprises a two-point boundary value problem (BVP).


Analytic Solution

The stretched-string BVP is straightforward to solve
analytically. General solutions of the wave equation take the form of
traveling waves,


\[y(x,t) = A \exp [\ii (k x - \sigma t) ],\]

where \(A\) an arbitrary constant, and the frequency
\(\sigma\) and wavenumber \(k\) are linked by the dispersion
relation


\[\sigma^{2} = c^{2} k^{2}.\]

The phase velocity of these waves is \(\sigma/k = \pm c\).

To satisfy the boundary condition at \(x=0\), we combine
traveling-wave solutions with opposite-sign wavenumbers


\[y(x,t) = A \exp [\ii (k x - \sigma t) ] - A \exp [\ii (- k x - \sigma t) ] = B \sin(k x) \exp ( - \ii \sigma t),\]

where \(B = 2A\). For the boundary condition at \(x=L\) to be
satisfied simultaneously,


\[\sin(k L) = 0,\]

and so


\[k L = n \pi\]

where \(n\) is a non-zero integer (we exclude \(n=0\) because
it corresponds to the trivial solution \(y(x,t)=0\)). Combining
this with the dispersion relation, we find that the normal-mode
eigenfrequencies of the stretched-string BVP are


(1)\[\sigma = n \frac{\pi c}{L},\]

and the corresponding eigenfunctions are


(2)\[y_{n}(x,t) = B \sin \left( \frac{n \pi x}{L} \right) \exp ( - \ii \sigma t).\]

The index \(n\) uniquely labels the modes, and \(y_{n}(x,t)\)
exhibits \(n-1\) nodes in the open interval \(x \in (0,L)\).



Separation

Now let’s see how we might go about solving the stretched-string BVP
numerically. We begin by performing a separation of variables on the
wave equation, assuming trial solutions of the form


(3)\[y(x;t) = \tilde{y}(x) \, \exp (-\ii \sigma t),\]

where \(\tilde{y}(x)\) is a function of \(x\) alone. Then,
the wave equation reduces to an ordinary differential equation (ODE)
for \(\tilde{y}\),


\[\nderiv{\tilde{y}}{x}{2} = - \frac{\sigma^{2}}{c^{2}} \tilde{y}.\]



Discretization

To solve the ODE, we discretize it to establish a set of difference
equations. The discretization involves transforming the continuous
function \(\tilde{y}(x)\) into a finite set of \(N\) values
\(\{\tilde{y}_{1},\tilde{y}_{2},\ldots,\tilde{y}_{N}\}\),
representing the function sampled on the discrete spatial grid
\(\{x_{1},x_{2},\ldots,x_{N}\}\).

For simplicity let’s assume the grid is uniform, so that


\[x_{j+1} - x_{j} \equiv \Delta x = \frac{L}{N-1}
\qquad (1 \leq j \leq N-1).\]

Then, the second derivative of \(\tilde{y}\) can be approximated to second order in \(\Delta x\) as


\[\left. \nderiv{\tilde{y}}{x}{2} \right|_{x=x_{j}} \approx \frac{\tilde{y}_{j+1} - 2 \tilde{y}_{j} + \tilde{y}_{j-1}}{\Delta x^{2}}
\qquad (2 \leq j \leq N-1).\]

This allows us to replace the ODE with \(N-2\) difference
equations


\[\frac{\tilde{y}_{j+1} - 2 \tilde{y}_{j} + \tilde{y}_{j-1}}{\Delta x^{2}} = - \frac{\sigma^{2}}{c^{2}} \tilde{y}_{j}
\qquad (2 \leq j \leq N-1).\]

Together with the two boundary conditions


\[\tilde{y}_{1} = 0 \qquad
\tilde{y}_{N} = 0,\]

we thus have a linear system of \(N\) algebraic equations and \(N\) unknowns.



Linear System

To find solutions to the linear system, we first write it in matrix form as


(4)\[\mS \vu = \mathbf{0},\]

where \(\vu\) is the vector with components


\[\begin{split} \vu =
 \begin{pmatrix}
 \tilde{y}_{1} \\
 \tilde{y}_{2} \\
 \vdots \\
 \tilde{y}_{N-1} \\
 \tilde{y}_{N}
\end{pmatrix}\end{split}\]

and the ‘system matrix’ \(\mS\) is an \(N \times N\) tridiagonal matrix
with components


\[\begin{split}\mS =
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & \sigma^{2} \tau^{2} - 2 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \sigma^{2} \tau^{2} - 2 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{pmatrix}.\end{split}\]

Here we’ve introduced


\[\tau \equiv \frac{\Delta x} c\]

as the sound crossing time of a single cell.

Equation (4) is a homogeneous linear system [https://en.wikipedia.org/wiki/System_of_linear_equations#Homogeneous_systems], meaning that it
has non-trivial solutions \(\vu\) only when the determinant of
\(\mS\) vanishes. With this in mind, we formulate the
characteristic equation for the BVP,


\[\Dfunc(\sigma) = 0\]

where \(\Dfunc(\sigma) \equiv \det(\mS)\) is a
discriminant function whose roots are the characteristic frequencies
(eigenfrequencies) of the stretched-string BVP.


[image: Plot showing the discriminant function versus frequency]
Fig. 1 Plot of the discriminant function \(\Dfunc(\sigma)\) as a
function of the frequency \(\sigma\), for the stretched-string BVP
with \(N=50\). The orange dots highlight where
\(\Dfunc=0\). The function has been scaled so that
\(\Dfunc(0) = 1\). (Source)



Fig. 1 plots the discriminant function for the BVP
discretized on a spatial grid of \(N=50\) points. The roots
(zeros) of the function are highlighted by the orange markers; they
fall very close to the values \(\sigma = \pi c/L, 2 \pi c/L,
\ldots\) predicted by the analytic solutions.



Scanning for Eigenfrequencies

While Fig. 1 is useful for visualizing
\(\Dfunc\), it’s not the best way to find
eigenfrequencies. Instead, we can rely on well-established techniques
for isolating and refining roots of monovariate functions.

First, we evaluate a set of \(M\) values
\(\{\Dfunc_{1},\Dfunc_{2},\ldots,\Dfunc_{M}\}\), representing the
discriminant function sampled on the discrete frequency grid
\(\{\sigma_{1},\sigma_{2},\ldots,\sigma_{M}\}\). Then, we scan
through these data looking for sign changes between adjacent
discriminant values. If \(\Dfunc_{i} \Dfunc_{i+1} < 0\), we know
that a root of the discriminant function must lie in the interval
\((\sigma_{i},\sigma_{i+1})\) — we have bracketed a
root. Fig. 2 illustrates the process of
bracket scanning for a frequency grid comprising \(M=32\) points,
distributed uniformly in \(\sigma\) across the same range as
plotted in Fig. 1. This figure highlights five
brackets containing the five roots identified previously.


[image: Plot showing the discriminant function versus frequency, with root brackets indicated]
Fig. 2 Plot of the discriminant values \(\{\Dfunc\}\) on the discrete
frequency grid \(\{\sigma\}\) (distributed uniformly in
\(\sigma\)), for the stretched-string BVP with \(N=50\) and
\(M=32\). The orange-haloed segments highlight adjacent points
that bracket a root \(\Dfunc=0\). (Source)



Once a bracket is established for a given root, it can be narrowed
through a process of iterative refinement until the root is converged
upon. There are a variety of well-known root-finding algorithms that
perform this refinement; the bisection method [https://en.wikipedia.org/wiki/Bisection_method] is conceptually
the simplest, but approaches such as Brent’s method [https://en.wikipedia.org/wiki/Brent's_method] can be
much more efficient. For the brackets plotted in
Fig. 2, Table 1 compares
the eigenfrequencies found using Python’s
scipy.optimize.brentq() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html#scipy.optimize.brentq] function, against the analytic values
predicted by eqn. (1).


Table 1 Numerical and analytic eigenfrequencies, in units of
\(\pi c/L\), for the stretched-string BVP with
\(N=50\). (Source)






	n

	numerical

	analytic



	1

	0.999829

	1.000000



	2

	1.998630

	2.000000



	3

	2.995378

	3.000000



	4

	3.989047

	4.000000



	5

	4.978618

	5.000000








Eigenfunction Reconstruction

For each of the eigenfrequencies found, we reconstruct the
corresponding eigenfunction by solving the linear system
(4). Because \(\det(\mS)\) is now zero, this system
is guaranteed to have a non-trivial solution. The solution vector
\(\vu\) resides in the null space [https://en.wikipedia.org/wiki/Null_space] of
\(\mS\), and we can use standard numerical techniques (e.g.,
singular value decomposition [https://en.wikipedia.org/wiki/Singular_value_decomposition])
to evaluate it.  Then, the \(j\)’th element of \(\vu\)
corresponds to the eigenfunction sampled at the \(j\)’th spatial
grid point:


\[(\vu)_{j} = \tilde{y}_{j} \equiv \tilde{y}(x_{j})\]


[image: Plot showing eigenfunctions for the first three modes]
Fig. 3 Plot of the eigenfunctions \(\tilde{y}\) as a function of
spatial coordinate \(x\), for the first three modes of the
stretched-string BVP with \(N=50\). The discrete points show
the numerical functions, and the solid lines the corresponding
analytic functions. In all cases, the eigenfunctions have been
normalized to have a maximum \(|\tilde{y}|\) of
unity. (Source)



Fig. 3 plots the eigenfunctions found in this way
for the first three modes (\(n=1,2,3\)) given in
Table 1. Also shown are the corresponding
analytic solutions given by eqn. (2). The
agreement between the two is good.





            

          

      

      

    

  

    
      
          
            
  
From Stretched String to gyre

The numerical technique demonstrated in the The Stretched String Problem
section provides a powerful analog to how gyre solves the
oscillation equations. The full details of gyre’s approach
are laid out in Townsend & Teitler (2013) [https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.3406T/abstract]; in this section we briefly
summarize it, highlighting similarities and differences with the
stretched-string problem.


Separation

Similar to the stretched-string problem, gyre
begins by separating variables in space and time. For the radial
displacement perturbation \(\xir\), trial solutions take the
form


\[\xir(r,\theta,\phi;t) = \operatorname{Re} \left[ \sqrt{4\pi} \, \txir(r) \, Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii \sigma t) \right]\]

(this is taken from the Separated Equations section). In addition to
the same sinusoidal time dependence as in eqn. (3), a
spherical harmonic term \(Y^{m}_{\ell}\) appears because we are
separating in three (spherical) spatial coordinates rather than one.



Discretization

As with the stretched-string problem, gyre discretizes the
ODE governing \(\txir(r)\) and related quantities on a spatial
grid \(\{x_{1},x_{2},\ldots,x_{N}\}\). However, a couple of
important differences arise at this juncture. First, the oscillation
equations are fourth order (sixth, in the non-adiabatic case). Rather
than employing finite-difference approximations to high-order
differential operators, gyre instead decomposes the problem
into a system of coupled first-order equations. This system is written
generically as


\[x \deriv{\vty}{x} = \mA \, \vty,\]

where \(\vty\) is a vector of \(\neqn\) dependent variables, and
\(\mA\) is a \(\neqn \times \neqn\) Jacobian matrix. In the
adiabatic case, \(\neqn=4\); in the non-adiabatic case,
\(\neqn=6\).

Second, while the above equation system can be discretized using a
simple finite-difference approximation to the left-hand side,
gyre offers more-sophisticated approaches with higher
orders of accuracy. These include the Magnus schemes described in
Townsend & Teitler (2013) [https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.3406T/abstract], and implicit Runge-Kutta schemes mentioned
in Townsend et al. (2018) [https://ui.adsabs.harvard.edu/abs/2018MNRAS.475..879T/abstract]. The choice of scheme is set by the
diff_scheme parameter of the &num namelist group. The
discretization leads to difference equations of the form


\[\vty_{j+1} = \mY_{j+1;j} \, \vty_{j},\]

relating the dependent variable vector at adjacent grid points. The
\(\neqn \times \neqn\) fundamental solution matrix \(\mY_{j+1,j}\)
is evaluated from the value(s) of \(\mA\) within the interval
\([x_{j},x_{j+1}]\) using the discretization scheme.

There are \(N-1\) of these sets of difference equations. They are
augmented with the boundary conditions


\[\subin{\mB} \, \vty_{1} = 0,
\qquad\qquad
\subout{\mB} \, \vty_{N} = 0,\]

where \(\subin{\mB}\) is a \(\nin \times \neqn\) matrix
representing the \(\nin\) inner boundary conditions, and
\(\subout{\mB}\) is a \(\nout \times \neqn\) matrix representing
the outer boundary conditions (note that \(\nin + \nout =
\neqn\)). Together, the difference equations and boundary conditions
comprise a linear system of \(\neqn\,N\) algebraic equations
and \(\neqn N\) unknowns.



Linear System

The linear system can be written in the same form
(cf. eqn. 4) as with the stretched-string problem
. However, now \(\vu\) is the vector with components


\[\begin{split} \vu =
 \begin{pmatrix}
 \vty_{1} \\
 \vty_{2} \\
 \vdots \\
 \vty_{N-1} \\
 \vty_{N}
\end{pmatrix}\end{split}\]

and the system matrix \(\mS\) is an \(\neq N \times \neqn N\)
block-staircase matrix with components


\[\begin{split}\mS =
\begin{pmatrix}
\subin{\mB} & \mz & \cdots & \mz & \mz \\
-\mY_{2;1} & \mI & \cdots & \mz & \mz \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\mz & \mz & \cdots & -\mY_{N;N-1} & \mI \\
\mz & \mz & \cdots & \mz & \subout{\mB}
\end{pmatrix}.\end{split}\]

As before, the linear system (4) has non-trivial
solutions only when the determinant of \(\mS\) vanishes. Thus,
gyre finds eigenvalues of the oscillation equation by solving the
characteristic equation


\[\Dfunc(\omega) \equiv \det(\mS) = 0,\]

where the dimensionless frequency


\[\omega \equiv \sqrt{\frac{R^{3}}{GM}} \, \sigma,\]

is the product of the star’s dynamical timescale and the oscillation
frequency \(\sigma\). (Internally, gyre works
extensively with such dimensionless quantities, as it improves the stability of the numerical
algorithms).



Scanning for Eigenfrequencies

In the adiabatic case, gyre searches for roots of the discriminant
function \(\Dfunc\) using the same bracketing and refinement
strategies as the stretched-string problem.

In the non-adiabatic case, a complication is that the discriminant
function and the dimensionless frequency are both complex
quantities. Solving the characteristic equation in the complex plane
is computationally challenging because there is no equivalent to
bracketing and refinement. gyre implements a couple of different
approaches to the problem, as discussed in the Non-Adiabatic Oscillations
section.





            

          

      

      

    

  

    
      
          
            
  
Limitations of the Numerical Method

The numerical method used both in the stretched string problem and in
GYRE generally performs very well; however, it has a couple of failure
scenarios that are important to understand. These scenarios arise
through poor choices of the spatial grid used to discretize the
governing differential equation(s), and/or the frequency grid used to
search for roots of the discriminant function.


Insufficient Spatial Resolution

The cost of evaluating the determinant of the system matrix
\(\mS\) scales proportionally to the number of grid points
\(N\) used for the discretization. Therefore, in the interests of
computational efficiency, we want to make \(N\) as small as
possible.

However, things go wrong when \(N\) becomes too
small. Fig. 4 demonstrates this by plotting the
discriminant function for the stretched-string BVP with
\(N=7\). Compared against Fig. 1, we see that
toward larger \(\sigma\) the roots of the discriminant function
become progressively shifted toward lower frequencies; and, above
\(\sigma \approx 3.5 \pi c/L\), they disappear altogether.


[image: Plot showing the discriminant function versus frequency]
Fig. 4 Plot of the discriminant function \(\Dfunc(\sigma)\) as a
function of the frequency \(\sigma\), for the stretched-string BVP
with \(N=7\). The orange dots highlight where
\(\Dfunc=0\). The function has been scaled so that
\(\Dfunc(0) = 1\). (Source)



To understand this behavior, recall that the determinant of an
\(N \times N\) matrix can be expressed (via Laplace
expansion [https://en.wikipedia.org/wiki/Laplace_expansion]) as the sum of N terms; and each term
itself involves the product of \(N\) matrix elements, picked so
that each row/column is used only once in the construction of the
term. With these points in mind, we can see from the definition
(4) of \(\mS\) that its determinant (i.e., the
discriminant function) must be a polynomial in \(\sigma^{2}\) of
order \(N-2\); and as such, it can have at most \(N-2\) (in
this case, 5) roots. This leads us to important lesson #1:


Attention

The number of points adopted in the discretization limits the
number of modes that can be found. With a spatial grid of
\(N\) points, there are only \(\sim N\) distinct
numerical solutions.




[image: Plot showing the discriminant function versus frequency]
Fig. 5 Plot of the eigenfunctions \(\tilde{y}\) as a function of
spatial coordinate \(x\), for the first three modes of the
stretched-string BVP with \(N=7\). The discrete points show
the numerical functions, and the solid lines the corresponding
analytic functions. (Source)



Returning to Fig. 4, the shift in
eigenfrequency for the modes that are found occurs due to inadequate
resolution of the eigenfunctions. We can see this in
Fig. 5, which reprises Fig. 3
for \(N=7\). Clearly, the spatial oscillations of the modes are
poorly resolved; the \(n=3\) mode, for instance, is sampled with
only one point per quarter wavelength. It’s little wonder that the
corresponding eigenfrequencies are off. This brings us to important
lesson #2 (closely related to #1):


Attention

The spatial resolution adopted in the discretization determines the
accuracy of the modes found. A given eigenfrequency will be
accurate only when the grid spacing is appreciably smaller than
the spatial variation scale of its corresponding eigenfunction.





Insufficient Frequency Resolution

When searching for root brackets, we have to evaluate the discriminant
function a total of \(M\) times. Therefore, as with the spatial grid,
computational efficiency dictates that we want to make \(M\) as
small as possible. Again, however, things go wrong if \(M\) is too
small. Fig. 6 reprises
Fig. 2, but adopting a much coarser frequency
grid with only \(M=5\) points.


[image: Plot showing the discriminant function versus frequency, with root brackets indicated]
Fig. 6 Plot of the discriminant values \(\{\Dfunc\}\) on the discrete
frequency grid \(\{\sigma\}\) (distributed uniformly in
\(\sigma\)), for the stretched-string BVP with \(N=50\) and
\(M=5\). The orange-haloed segments highlight adjacent points
that bracket a root \(\Dfunc=0\). (Source)



Clearly, a pair of adjacent roots (corresponding to the \(n=3\)
and \(n=4\) modes) is missed in the bracketing process, as a
direct result of the too-coarse grid.

Even when many points are included in the frequency grid, issues can
still arise when the distribution of points doesn’t match the
distribution of roots. An example of this is provided in
Fig. 7, which reprises
Fig. 2 with the same number \(M=32\) of
points in the grid, but now distributed uniformly in
\(\sigma^{-1}\).


[image: Plot showing the discriminant function versus frequency, with root brackets indicated]
Fig. 7 Plot of the discriminant values \(\{\Dfunc\}\) on the discrete
frequency grid \(\{\sigma\}\) (distributed uniformly in
\(\sigma^{-1}\)), for the stretched-string BVP with \(N=50\) and
\(M=32\). The orange-haloed segments highlight adjacent points
that bracket a root \(\Dfunc=0\). (Source)



Now it’s the roots corresponding to the \(n=4\) and \(n=5\)
mode pair that are missed. As with the case in
Fig. 6, the failure ultimately arises
because the spacing between adjacent frequency grid points is (in at
least some parts of the grid) larger than the spacing between adjacent
roots. This can be summarized in important lesson #3:


Attention

The frequency resolution adopted in the root bracketing influences
the completeness of the modes found. All modes will be found only
when the grid spacing is smaller than the eigenfrequency separation
of adjacent modes, across the full range of the grid.







            

          

      

      

    

  

    
      
          
            
  
Interpreting Output Files

This chapter demonstrates using Python [https://www.python.org] to
read and plot the summary and detail output files written by the GYRE
frontends. Further information about these files is
provided in the Output Files chapter.


PyGYRE

PyGYRE [https://github.com/rhdtownsend/pygyre] is a Python package maintained
separately from GYRE, that provides a set of routines that greatly
simplify the analysis of summary and detail files. Detailed
information about PyGYRE can be found in the full documentation [https://pygyre.readthedocs.io/en/latest/]; here, we demonstrate
how to use it to read and plot the output files from the
Example Walkthrough section.

As a preliminary step, you’ll need to install PyGYRE from the Python
Package Index (PyPI) [https://pypi.org/]. This can be done using
the pip command,

pip install pygyre



If PyGYRE is already installed, you can upgrade to a more-recent
version via

pip install --upgrade pygyre





Analyzing a Summary File

To analyze the summary file written by gyre during the
example walkthrough, change into your work
directory and fire up your preferred interactive
Python environment (e.g., Jupyter [https://jupyter.org/]). Import
PyGYRE and the other modules needed for plotting:

# Import modules

import pygyre as pg
import matplotlib.pyplot as plt
import numpy as np





(you may want to directly cut and paste this code). Next, read the
summary file into the variable s:

# Read data from a gyre summary file

s = pg.read_output('summary.h5')





The pygyre.read_output() [https://pygyre.readthedocs.io/en/latest/api-ref.html#pygyre.read_output] function is able to read
files in both TXT and HDF formats, returning the data in an
astropy.table.Table [https://docs.astropy.org/en/latest/api/astropy.table.Table.html#astropy.table.Table] object. To inspect the data
on-screen, simply evaluate the table:

# Inspect the data

s





From this, you’ll see that there are three columns in the table,
containing the harmonic degree l, radial order n_pg and
frequency freq of each mode found during the GYRE run.

Next, plot the frequencies against radial orders via

# Plot the data

plt.figure()

plt.plot(s['n_pg'], s['freq'].real)

plt.xlabel('n_pg')
plt.ylabel('Frequency (cyc/day)')





(the values in the freq column are complex, and we plot the real
part). The plot should look something like Fig. 8.


[image: Plot showing mode frequency versus radial order]
Fig. 8 The frequency \(\nu\) of \(\ell=1\) and \(\ell=2\)
modes, plotted against their radial order \(\numpg\).
(Source)



The straight line connecting the two curves occurs because we are
plotting both the dipole and quadrupole modes together. To separate
them, the table rows can be grouped by harmonic degree:

# Plot the data, grouped by harmonic degree

plt.figure()

sg = s.group_by('l')

plt.plot(sg.groups[0]['n_pg'], sg.groups[0]['freq'].real, label=r'l=1')
plt.plot(sg.groups[1]['n_pg'], sg.groups[1]['freq'].real, label=r'l=2')

plt.xlabel('n_pg')
plt.ylabel('Frequency (cyc/day)')

plt.legend()





The resulting plot, in Fig. 9, looks much better.


[image: Plot showing mode frequency versus radial order]
Fig. 9 The frequency nu of \(\ell=1\) and \(\ell=2\)
modes, grouped by \(\ell\) and plotted against their radial order \(\numpg\).
(Source)





Analyzing a Detail File

Now let’s take a look at one of the detail files, for the mode with
\(\ell=1\) and \(\numpg=-7\). As with the summary file,
pygyre.read_output() [https://pygyre.readthedocs.io/en/latest/api-ref.html#pygyre.read_output] can be used to read the file
data into an astropy.table.Table [https://docs.astropy.org/en/latest/api/astropy.table.Table.html#astropy.table.Table] object:

# Read data from a GYRE detail file

d = pg.read_output('detail.l1.n-7.h5')





Inspecting the data using

# Inspect the data

d





shows there are 7 columns: the fractional radius x, the radial
displacement eigenfunction xi_r, the horizontal displacement
eigenfunction xi_h, and 4 further columns storing structure
coefficients (see the Detail Files section for descriptions of
these data). Plot the two eigenfunctions using the code

# Plot displacement eigenfunctions

plt.figure()

plt.plot(d['x'], d['xi_r'].real, label='xi_r')
plt.plot(d['x'], d['xi_h'].real, label='xi_h')

plt.xlabel('x')

plt.legend()






[image: Plot showing displacement eigenfunctions versus fractional radius]
Fig. 10 The radial (\(\txir\)) and horizontal (\(\txih\))
displacement eigenfunctions of the \(\ell=1\), \(n_{\rm
pg}=-7\) mode, plotted against the fractional radius \(x\).
(Source)



The plot should look something like Fig. 10. From
this figure , we see that the radial wavelengths of the eigenfunctions
become very short around a fractional radius \(x \approx
0.125\). To figure out why this is, we can take a look at the star’s
propagation diagram:

# Evaluate dimensionless characteristic frequencies

l = d.meta['l']
omega = d.meta['omega']

x = d['x']
V = d['V_2']*d['x']**2
As = d['As']
c_1 = d['c_1']
Gamma_1 = d['Gamma_1']

d['N2'] = d['As']/d['c_1']
d['Sl2'] = l*(l+1)*Gamma_1/(V*c_1)

# Plot the propagation diagram

plt.figure()

plt.plot(d['x'], d['N2'], label='N^2')
plt.plot(d['x'], d['Sl2'], label='S_l^2')

plt.axhline(omega.real**2, dashes=(4,2))

plt.xlabel('x')
plt.ylabel('omega^2')

plt.ylim(5e-2, 5e2)
plt.yscale('log')





Note how we access the mode harmonic degree l and dimensionless
eigenfrequency omega through the table metadata dict
d.meta. The resulting plot (Fig. 11) reveals
that the Brunt-Väisälä frequency squared is large around \(x
\approx 0.125\); this feature is a consequence of the molecular weight
gradient zone outside the star’s convective core, and results in the
short radial wavelengths seen there in Fig. 10.


[image: Plot showing propagation diagram]
Fig. 11 Propagation diagram for the \(5\,\Msun\) model, plotting the
squares of the Brunt-Väisälä (\(N^{2}\)) and Lamb
(\(S_{\ell}^{2}\)) frequencies versus fractional radius
\(x\). The horizontal dashed line shows the frequency squared
\(\omega^{2}\) of the \(\ell=1\), \(n_{\rm pg}=-7\)
mode shown in Fig. 10. Regions where
\(\omega^{2}\) is smaller (greater) than both \(N^{2}\) and
\(S_{\ell}^{2}\) are gravity (acoustic) propagation regions;
other regions are evanescent. (Source)







            

          

      

      

    

  

    
      
          
            
  
Understanding Grids

This chapter describes how the GYRE frontends set
up frequency and spatial grids, and discusses some strategies for
ensuring these grids are optimal.



	Spatial Grids
	Scaffold Grid

	Iterative Refinement
	Mechanical Criterion
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Spatial Grids

The various GYRE frontends all discretize their
equations on a spatial grid \(\{x_{1},x_{2},\ldots,x_{N}\}\) in
the dimensionless radial coordinate \(x \equiv r/R\). The
computational cost of a calculation scales with the total number of
points \(N\) in this grid, while the grid’s resolution — i.e.,
the spacing between adjacent points — impacts both the accuracy of
solutions, and in the case of the gyre frontend, the number
of solutions that can be found. (The Limitations of the Numerical Method
section discusses these behaviors in the context of the stretched
string BVP).


Scaffold Grid

A fresh spatial grid is constructed for each iteration of the main
computation loop (see the flow-charts in the Frontends
chapter). This is done under the control of the &grid namelist
groups; there must be at least one of these, subject to the tag
matching rules (see the Working With Tags chapter). If there is
more than one matching &grid namelist group, then the final
one is used.

Each grid begins as a scaffold grid, comprising the following points:


	an inner point \(\xin\);


	an outer point \(\xout\);


	the subset of points of the source grid satisfying \(\xin < x <
\xout\)




The source grid can be either the input model grid, or a grid read
from file; this choice is determined by the scaffold_src
parameter of the &grid namelist group. By default,
\(\xin\) and \(\xout\) are obtained from the source grid as
well (as its inner-most and outer-most point). However, either or
both can be overridden using the x_i and x_o
parameters.



Iterative Refinement

Scaffold grids are refined via a sequence of iterations. During a
given iteration, each subinterval \([x_{j},x_{j+1}]\) is assessed
against various criteria (discussed in greater detail below). If any
criteria match, then the subinterval is refined by bisection,
inserting an additional point at the midpoint


\[x_{j+\half} = \frac{x_{j} + x_{j+1}}{2}.\]

The sequence terminates if no refinements occur during a given
iteration, or if the number of completed iterations equals the value
specified by the n_iter_max parameter of the &grid
namelist group.


Mechanical Criterion

The wave criterion involves a local analysis of the mechanical parts
of the oscillation equations, with the goal of improving resolution
where the displacement perturbation \(\vxi\) is rapidly
varying. Within the subinterval \([x_{j},x_{j+1}]\), the
\(y_{1}\) and \(y_{2}\) solutions (see the
Dimensionless Formulation section) take the approximate form


\[y_{1,2}(x) \sim \exp [ \chi \, (\ln x - \ln x_{j+\half}) ],\]

where \(\chi\) is one of the two eigenvalues of the mechanical
(upper-left) \(2 \times 2\) submatrix of the full Jacobian matrix
\(\mA\), evaluated at the midpoint \(x_{j+\half}\).

In propagation zones the imaginary part \(\chi_{\rm i}\) of the
eigenvalue gives the local wavenumber in \(\ln x\) space, and
\(2\pi \chi_{\rm i}^{-1}\) the corresponding wavelength; while in
evanescent zones the real part \(\chi_{\rm r}\) gives the local
exponential growth/decay rate, and \(\chi_{\rm r}^{-1}\) the
corresponding e-folding length.

Based on this analysis, the criterion for refinement of the
subinterval is


\[( \ln x_{j+1} - \ln x_{j} ) \, \max (\wosc |\chi_{\rm i}|, \wexp |\chi_{\rm r}|) > 2 \pi,\]

where \(\wosc\) and \(\wexp\) are user-definable weighting
parameters. This causes refinement if the subinterval width (in
\(\ln x\) space) exceeds \(\wosc^{-1}\) times the local
wavelength, or \(2\pi \wexp^{-1}\) times the local e-folding
length.

Because there are two possible values for \(\chi\), the above
refinement criterion is applied twice (once for each). Moreover,
because \(\chi\) depends implicitly on the oscillation frequency,
the criterion is applied for each frequency in the grid
\(\{\omega_{1},\omega_{2},\ldots,\omega_{M}\}\) (see the
Frequency Grids section).



Thermal Criterion

Similar to the wave criterion discussed above, the thermal criterion
involves a local analysis of the energetic parts of the oscillation
equation, with the goal of improving resolution where the thermal
timescale is very long and perturbations are almost adiabatic. Within
the subinterval \([x_{j},x_{j+1}]\), the \(y_{5}\) and
\(y_{6}\) perturbation take the approximate form


\[y_{5,6}(x) \sim \exp [ \pm \tau \, (\ln x - \ln x_{j+\half}) ],\]

where \(\pm\tau\) are the eigenvalues of the matrix formed from
the energetic (bottom-right) \(2 \times 2\) submatrix of the full
Jacobian matrix \(\mA\), evaluated at the midpoint
\(x_{j+\half}\).

Based on this analysis, the criterion for refinement of the
subinterval is


\[( \ln x_{j+1} - \ln x_{j} ) \, \wthm |\tau| > 1,\]

where \(\wthm\) is a user-definable weighting parameter.

Because \(\tau\) depends implicitly on the oscillation frequency,
this criterion is applied for each frequency in the grid
\(\{\omega_{1},\omega_{2},\ldots,\omega_{M}\}\).



Structural Criteria

The structural criteria have the goal of improving resolution where
the stellar structure coefficients are changing rapidly. For a given
coefficient \(C\), the criterion for refinement of the subinterval
\([x_{j},x_{j+1}]\) is


\[( \ln x_{j+1} - \ln x_{j} ) \, \wstr \left| \pderiv{\ln C}{\ln x} \right| > 1,\]

where \(\wstr\) is a user-definable weighting parameter. This
criterion is applied separately to the \(V_2 \equiv V/x^{2}\),
\(U\), \(A^{*}\), \(c_{1}\) and \(\Gamma_{1}\)
coefficients (see the Structure Coefficients section).



Central Criteria

All of the above criteria depend on the logarithmic subinterval width
\((\ln x_{j+1} - \ln x_{j})\), and cannot be applied to the first
subinterval \([x_{1},x_{2}]\) if it extends to the center of the
star, \(x = 0\). In such cases, the resolve_ctr parameter
of the &grid namelist group determines whether the subinterval
is refined. If set to .FALSE., then no refinement occurs;
while if set to .TRUE., then the refinement criteria are


\[\chi_{\rm i} > 0\]

or


\[w_{\rm ctr} | \chi_{\rm r} | > 1\]

where \(\chi\) is the eigenvalue from the local analysis (see the
Mechanical Criterion section) corresponding to the solution that
remains well-behaved at the origin, and \(w_{\rm ctr}\) is a
user-definable weighting parameter. The first criterion causes
refinement if the subinterval is in a propagation zone, and the second
if the solution slope \(|\sderiv{y}{\ln x}| \sim |\chi_{\rm
r}|\) exceeds \(w_{\rm ctr}^{-1}\).

Because \(\chi\) depends implicitly on the oscillation frequency,
these criteria are applied for each frequency in the grid
\(\{\omega_{1},\omega_{2},\ldots,\omega_{M}\}\).




Limiting Controls

A couple of additional controls affect the iterative refinement
described above. Refinement of the \([x_{j},x_{j+1}]\) subinterval
always occurs if


\[x_{j+1} - x_{j} > \Delta x_{\rm max},\]

and never occurs if


\[x_{j+1} - x_{j} < \Delta x_{\rm min},\]

where both \(\Delta x_{\rm max}\) and \(\Delta x_{\rm min}\)
are user-definable.



Namelist Parameters

The full set of parameters supported by the &grid namelist
group is listed in the Grid Parameters section. However, the table
below summarizes the mapping between the user-definable controls
appearing in the expressions above, and the corresponding namelist
parameters.







	Symbol

	Parameter





	\(\wosc\)

	w_osc



	\(\wexp\)

	w_exp



	\(\wthm\)

	w_thm



	\(\wstr\)

	w_str



	\(\wctr\)

	w_ctr



	\(\Delta x_{\rm max}\)

	dx_max



	\(\Delta x_{\rm min}\)

	dx_min








Recommended Values

While w_exp, w_osc and w_ctr
all default to zero, it is highly recommended to use non-zero values
for these parameters, to ensure adequate resolution of solutions
throughout the star. Reasonable starting choices are w_osc
= 10, w_exp = 2 and w_ctr = 10.





            

          

      

      

    

  

    
      
          
            
  
Frequency Grids

The gyre frontend evaluates its discriminant function
\(\Dfunc(\omega)\) on a grid
\(\{\omega_{1},\omega_{2},\ldots,\omega_{M}\}\) in the
dimensionless frequency, and scans for changes in the sign of
\(\Dfunc(\omega)\) that are indicative of a bracketed root.  The
computational cost of a calculation scales with the total number of
points \(M\) in this grid, while the grid’s resolution — i.e.,
the spacing between adjacent points — impacts the completeness of
the modes found by gyre. (See the Limitations of the Numerical Method
section for a discussion of these behaviors).

A fresh frequency grid is constructed for each iteration of the main
computation loop (see the flow-chart in the gyre section). This is done under the control of the
&scan namelist groups; there must be at least one of these,
subject to the tag matching rules (see the Working With Tags
chapter). Each &scan group creates a separate frequency grid;
these are then combined and the discriminant function is evaluated on
the merged grid.


Grid Types

The grid_type parameter of the &scan namelist group
controls the overall distribution of points in a frequency grid. There
are currently three options:


Linear Grid

When grid_type = 'LINEAR', gyre first evaluates a
sequence of dimensionless angular frequencies in the grid reference
frame according to the formula


\[\omega^{\rm g}_{i} = \frac{1}{M-1} \left[ (M - i)\, \omega^{\rm g}_{\rm min}  + (i - 1) \, \omega^{\rm g}_{\rm max} \right]
\qquad i = 1,2,\ldots,M.\]

(here, the superscript ‘g’ indicates that these are frequencies in the
grid reference frame). Then, it transforms from the grid frame to the
inertial reference frame via


\[\omega_{i} = \omega^{\rm g}_{i} + \Delta \omega\]

where \(\Delta\omega\) is the frequency shift that transforms from
the grid frame to the inertial frame. The actual value of this shift
depends on the grid_frame parameter:


	When grid_frame = 'INERTIAL', the shift is \(\Delta
\omega = 0\); the grid frame and the inertial frame coincide.


	When grid_frame = 'COROT_I', the shift is \(\Delta
\omega = m \, \Orot^{\rm i} \sqrt{R^{3}/GM}\), where
\(\Orot^{\rm i}\) is the rotation angular frequency at the
inner boundary of the spatial grid; the grid frame coincides with
the local co-rotating frame at that boundary.


	When grid_frame = 'COROT_O', the shift is \(\Delta
\omega = m \, \Orot^{\rm o} \sqrt{R^{3}/GM}\), where
\(\Orot^{\rm o}\) is the rotation angular frequency at the outer
boundary of the spatial grid; the grid frame coincides with the
local co-rotating frame at that boundary.




The range spanned by the frequency grid, in the grid frame, is set by
\(\omega^{\rm g}_{\rm min}\) and \(\omega^{\rm g}_{\rm max}\). These are
evaluated via


\[\omega^{\rm g}_{\rm  min} = \frac{f_{\rm min}}{\widehat{f}_{\rm min}} + \delta \omega - \Delta \omega,
\qquad \qquad
\omega^{\rm g}_{\rm max} = \frac{f_{\rm max}}{\widehat{f}_{\rm max}} + \delta \omega - \Delta \omega,\]

where \(f_{\rm min,max}\) are user-definable,
\(\widehat{f}_{\rm min,max}\) will be discussed below in the
Frequency Units section, and \(\delta\omega\) is the frequency
shift that transforms from the frame in which \(f_{\rm min,max}\)
are defined to the inertial frame. The actual value of this shift depends
on the freq_frame parameter, which behaves analogously to the
grid_frame parameter discussed above.



Inverse Grid

When grid_type = 'INVERSE', gyre first evaluates a sequence
of dimensionless angular frequencies in the grid reference frame
according to the formula


\[\omega^{\rm g}_{i} = (M-1) \left[ \frac{(M - i)}{\omega^{\rm g}_{\rm min}}  + \frac{(i - 1)}{\omega^{\rm g}_{\rm max}} \right]^{-1}
\qquad i = 1,2,\ldots,M.\]

The grid creation then proceeds as described above in the Linear Grid section.



File Grid

When grid_type = 'FILE', gyre first reads a sequence of
dimensioned frequencies \(\{f_{1},f_{2},\ldots,f_{M}\}\) from an
external file named by the grid_file parameter. This file is
a single-column ASCII table; the number of points \(M\) is
determined implicitly from the number of lines in the file. Then, it
transforms these frequencies via


\[\omega_{i} = \frac{f_{j}}{\widehat{f}} + \delta \omega,\]

where \(\widehat{f}\) will be discussed below in the
Frequency Units section, and \(\delta\omega\) is the frequency
shift that transforms from the frame in which \(f\) is defined to
the inertial frame. The actual value of this shift depends on the
freq_frame parameter, which behaves analogously to the
grid_frame parameter discussed above.




Frequency Units

In the expressions above, terms of the form \(f/\widehat{f}\) are used
to transform a dimensioned frequency \(f\) into a dimensionless
one \(\omega\). The scale factor \(\widehat{f}\) depends on the
freq_units parameter. Thus, for example, if
freq_units = 'UHZ', then \(f\) is treated as a linear
frequency expressed in \({\rm \mu Hz}\), and the scale factor is set by


\[\widehat{f} = \sqrt{\frac{GM}{R^{3}}} \frac{1}{2\pi\,{\rm \mu Hz}}\]

(the factor of \(2\pi\) comes from the transformation between linear
and angular frequency).

The full set of values supported by the freq_units parameter
is listed in the Frequency Scan Parameters section.



Namelist Parameters

The full set of parameters supported by the &scan namelist
group is listed in the Frequency Scan Parameters section. However, the table
below summarizes the mapping between the user-definable controls
appearing in the expressions above, and the corresponding namelist
parameters:







	Symbol

	Parameter





	\(f_{\rm min}\)

	freq_min



	\(f_{\rm max}\)

	freq_max



	\(M\)

	n_freq








Recommended Values

The default values freq_min=1, freq_max=10,
n_freq=10, together with grid_type='LINEAR' are
sufficient to find some modes — although unlikely the modes that
you want. Choosing good values for these parameters requires some
degree of judgment, but here are some suggestions:


	The number of points in the frequency grid should be a factor of
2–3 larger than the number of modes you expect gyre will
find. This is to ensure that the frequency spacing of the grid is
everywhere smaller than the anticipated eigenfrequency spacing
between adjacent modes (see the Limitations of the Numerical Method section for
further discussion).


	The distribution of points in the frequency grid should follow
anticipated distribution of mode frequencies; this again is to
ensure adequate frequency resolution. For p modes, which tend toward
a uniform frequency spacing in the asymptotic limit of large radial
order, you should chose grid_type = 'LINEAR';
likewise, for g modes, which tend toward a uniform period spacing in
the asymptotic limit, you should choose grid_type = 'INVERSE'.


	When modeling rotating stars, you should choose grid_frame
= 'COROT_I' or grid_frame = 'COROT_O', because the
asymptotic behaviors mentioned above apply in the co-rotating
reference frame rather than the inertial one.








            

          

      

      

    

  

    
      
          
            
  
Working With Tags

This chapter uses a worked example to demonstrate tags — a simple
yet powerful feature allowing a much greater degree of control over
GYRE calculations.


Example Tag Usage

Consider applying gyre to calculate the eigenfrequencies of
a red giant branch (RGB) stellar model. Because non-radial p-modes in
the convective envelope couple with high-order g-modes in the
radiative core, the frequency spacing of the non-radial modes is
much smaller than that of the radial modes. In such cases, we
ideally want to use a coarse frequency scan for the radial modes and a
fine frequency scan for the non-radial modes.

The following input file, which is designed to work with the \(2\,\Msun\) RGB
model in $GYRE_DIR/models/mesa/rgb/rgb.mesa, achieves this
goal using tags:

&constants
/

&model
  model_type = 'EVOL'  ! Obtain stellar structure from an evolutionary model
  file = 'rgb.mesa'    ! File name of the evolutionary model
  file_format = 'MESA' ! File format of the evolutionary model
/

&mode
  l = 0          ! Harmonic degree
  tag = 'radial' ! Matching tag
/

&mode
  l = 1              ! Harmonic degree
  tag = 'non-radial' ! Matching tag
/

&mode
  l = 2              ! Harmonic degree
  tag = 'non-radial' ! Matching tag
/

&osc
  outer_bound = 'VACUUM' ! Assume the density vanishes at the stellar surface
/

&rot
/

&num
  diff_scheme = 'COLLOC_GL4' ! 4th-order collocation scheme for difference equations
/

&scan
  grid_type = 'LINEAR' ! Scan grid uniform in frequency
  freq_min = 41        ! Minimum frequency to scan from
  freq_max = 43        ! Maximum frequency to scan to
  freq_units = 'UHZ'   ! Frequency units
  n_freq = 10          ! Number of frequency points in scan
  tag_list = 'radial'  ! Pair only with 'radial' &mode groups
/

&scan
  grid_type = 'LINEAR' 	  ! Scan grid uniform in frequency
  freq_min = 41        	  ! Minimum frequency to scan from
  freq_max = 43           ! Maximum frequency to scan to
  freq_units = 'UHZ'      ! Frequency units
  n_freq = 100            ! Number of frequency points in scan
  tag_list = 'non-radial' ! Pair only with 'non-radial' &mode groups
/

&grid
  w_osc = 10  ! Oscillatory region weight parameter
  w_exp = 2   ! Exponential region weight parameter
  w_ctr = 100 ! Central region weight parameter
/

&ad_output
  summary_file = 'summary.h5'                  ! File name for summary file
  summary_item_list = 'l,n_pg,freq,freq_units' ! Items to appear in summary file
  freq_units = 'UHZ'                           ! Units of freq output items
/

&nad_output
/





Observe that each &mode namelist groups has a tag
parameter. When processing a given &mode, gyre
pairs it up with other namelist groups that match one of the following
criteria:


	The namelist group doesn’t have a tag_list parameter;


	The namelist does have a tag_list parameter, and the
parameter value (a comma-separated list) contains the tag value
defined in the &mode group.




In the example given above, the &osc namelist group doesn’t
have a tag_list parameter; therefore, it is paired with all
three &mode namelist groups, irrespective of their
tag values. However, the two &scan namelist groups
each have tag_list parameters. In the first group the
radial tag appears, and so this group is paired with the
first &mode namelist group (i.e., the \(\ell=0\)
mode). Likewise, in the second group the non-radial tag
appears, and so this group is paired with the second and third
&mode namelist groups (i.e., the \(\ell=1\) and
\(\ell=2\) modes).



Tag Rules

In addition to the matching criteria given above, there are a couple
of rules that must be obeyed by tags:


	Tag names can’t contain commas (however, they can be otherwise arbitrary);


	If a &mode namelist group doesn’t have a tag
parameter, then only namelists without a tag_list parameter
will be paired with it;


	The &constants, &model, &ad_output and
&nad_output namelist groups don’t support tags.








            

          

      

      

    

  

    
      
          
            
  
Advanced Usage

This chapter covers a number of topics that fall under the umbrella of
‘advanced’ GYRE usage.



	Non-Adiabatic Oscillations
	Overview

	Adiabatic Method

	Minmod Method

	Contour Method





	Tidal Forcing
	Overview

	Truncating the Sums

	Optimizing Grids

	Output Files





	Including Rotation
	Setting the Rotation Rate

	Incorporating Doppler Effects

	Incorporating Coriolis Effects












            

          

      

      

    

  

    
      
          
            
  
Non-Adiabatic Oscillations

This section discusses how to undertake non-adiabatic oscillation
calculations using the gyre frontend. Asteroseismic studies
typically rely on adiabatic calculations, because the frequencies of
oscillation modes are the primary focus. However, for heat-driven
modes the linear growth or damping rates can also be of interest —
and evaluating these requires that non-adiabatic effects are included
in the oscillation equations.


Note

Not all types of stellar mode include the necessary data
(e.g., thermodynamic coefficients, opacity partial derivatives) to
undertake non-adiabatic calculations. The Model Capabilities section
summarizes this information.




Overview

To include non-adiabatic effects gyre augments the
linearized mass, momentum and Poisson equations with the linearized
heat and radiative diffusion equations (see the Linearized Equations
section for full details). With these additions, the equations and
their solutions become complex quantities. The assumed time dependence
for perturbations is \(\propto \exp (-\ii \sigma t)\); therefore,
the real part \(\sigmar\) and imaginary part \(\sigmai\) of
the eigenfrequency are related to the mode period \(\Pi\) and
growth e-folding time \(\tau\), respectively, via


\[\Pi = \frac{2\pi}{\sigmar}, \qquad
\tau = \frac{1}{\sigmai}.\]

Solving the non-adiabatic equations proceeds using the same general
approach as in the adiabatic case, by searching for the roots of a
discriminant function \(\Dfunc(\omega)\) (see the Numerical Methods
chapter for more details). However, a challenge is that there is no
simple way to bracket roots in the complex plane. Instead,
gyre must generate initial trial roots that are close to
the true roots, and then refine them iteratively. Currently,
gyre offers three methods for establishing the trial roots.



Adiabatic Method

The adiabatic method involves adopting the (real) roots found from
adiabatic calculations as the initial trial roots for the
non-adiabatic problem. This works well as long as the adiabatic and
non-adiabatic roots lie close together in the complex plane —
typically, when the oscillation modes are only weakly non-adiabatic,
with \(|\sigmai/\sigmar| \ll 1\).

To perform non-adiabatic calculations with the adiabatic method, set
the following parameters in the &osc namelist group:


	nonadiabatic=.TRUE.


	adiabatic=.TRUE.[1]




and the following parameters in the &num namelist group:


	ad_search='BRACKET'[1]


	nad_search='AD'[1]




You may also wish to use the following setting in the &num
namelist group:


	diff_scheme='MAGNUS_GL2'




This tells gyre to evaluate the finite-difference equations
using the 2nd order Magnus scheme; experience suggests that this gives
the most reliable convergence for the root refinement.

An example of the adiabatic method in action can be found in the
$GYRE_DIR/test/nad/mesa/bcep/gyre.in namelist input file,
which is set up to find \(\ell=0,\ldots,3\) modes of a
\(20\,\Msun\) \(\beta\) Cephei model using the adiabatic
method. The important parts are as follows:

&osc
  nonadiabatic = .TRUE.
/

&num
  diff_scheme = 'MAGNUS_GL2'
  restrict_roots = .FALSE.
/

&scan
  grid_type = 'LINEAR'
  freq_min = 3.0
  freq_max = 10.0
  n_freq = 50
/





Note the nonadiabatic parameter in the &osc namelist
group, and the diff_scheme parameter in the &num
namelist group. The restrict_roots=.FALSE.
setting, also in the &num namelist group, tells
gyre not to reject any modes that have \(\sigmar\)
outside the frequency range specified by the &scan namelist
group; this ensures that modes whose non-adiabatic frequencies fall
just outside the frequency grid are still found.



Minmod Method

The minmod method involves evaluating the discriminant function along
the real-\(\omega\) axis, and then adopting local minima in its
modulus \(|\Dfunc|\) as the initial trial roots for the
non-adiabatic problem. The method is described in full in
Goldstein & Townsend (2020) [https://ui.adsabs.harvard.edu/abs/2020ApJ...899..116G/abstract]; as shown there, it does not perform
significantly better than the adiabatic method, and is included in
gyre for the sake of completeness.

To perform non-adiabatic calculations with the minmod method, set
the following parameters in the &osc namelist group:


	nonadiabatic=.TRUE.


	adiabatic=.FALSE.[2]




and the following parameters in the &num namelist group:


	nad_search='MINMOD'




As with the adiabatic method, you may also wish to use the following
setting in the &num namelist group:


	diff_scheme='MAGNUS_GL2'




An example of the minmod method in action can be found in the
$GYRE_DIR/test/nad/mesa/bcep-minmod/gyre.in namelist input
file, which is equivalent to
$GYRE_DIR/test/nad/mesa/bcep/gyre.in but using the
minmod method. The important parts are as follows:

&osc
  adiabatic = .FALSE.
  nonadiabatic = .TRUE.
/

&num
  diff_scheme = 'MAGNUS_GL2'
  nad_search = 'MINMOD'
  restrict_roots = .FALSE.
/

&scan
  grid_type = 'LINEAR'
  freq_min = 3.0
  freq_max = 10.0
  n_freq = 250
/





Note the additional nad_search='MINMOD' parameter
in the &num namelist group, which stipulates that the minmod
method should be used.



Contour Method

The contour method involves evaluating the discriminant function on a
grid in the complex-\(\omega\) plane, and then adopting
intersections between the real zero-contours \(\Dfuncr=0\), and
the corresponding imaginary ones \(\Dfunci=0\), as the initial
trial roots for the non-adiabatic problem. The method is described in
full in Goldstein & Townsend (2020) [https://ui.adsabs.harvard.edu/abs/2020ApJ...899..116G/abstract]; it is very effective even for
strongly non-adiabatic modes with \(|\sigmai/\sigmar| \sim 1\),
although there is an increased computational cost (see here
for one strategy for mitigating this cost).

To perform non-adiabatic calculations with the contour method, set
the following parameters in the &osc namelist group:


	nonadiabatic=.TRUE.


	adiabatic=.FALSE.[2]




and the following parameters in the &num namelist group:


	nad_search='CONTOUR'




You must also ensure that at least one &scan namelist
group with axis='REAL' is present, and likewise
at least one with axis='IMAG'. Together, these
groups define the real and imaginary axes of the discriminant grid in
the complex-\(\omega\) plane. As a rule of thumb, the resolution
along the imaginary axis should be comparable to that along the real
axis; this ensures that the contour-tracing algorithm behaves well.

Finally, as with the adiabatic method, you may also wish to use the
following setting in the &num namelist group:


	diff_scheme='MAGNUS_GL2'





Note

Because g modes are spaced uniformly in period (in the asymptotic
limit of large radial order), it would seem sensible to set
grid_type='INVERSE' in the &scan
namelist group(s) that correspond to the real axis (i.e.,
axis='REAL'). However, this typically results
in a mismatch between the resolution of the real and imaginary
axes, and the contour method doesn’t perform well. A fix for this
issue will be forthcoming in a future release of GYRE,
but in the meantime it’s probably best to avoid the contour method
for g modes.



An example of the minmod method in action can be found in the
$GYRE_DIR/test/nad/mesa/bcep-contour/gyre.in namelist input
file, which is equivalent to
$GYRE_DIR/test/nad/mesa/bcep/gyre.in but using the
minmod method. The important parts are as follows:

&osc
  adiabatic = .FALSE.
  nonadiabatic = .TRUE.
/

&num
  diff_scheme = 'MAGNUS_GL2'
  restrict_roots = .FALSE.
  nad_search = 'CONTOUR'
/

&scan
  axis = 'REAL'
  grid_type = 'LINEAR'
  freq_min = 3.0
  freq_max = 10.0
  n_freq = 50
/

&scan
  axis = 'IMAG'
  grid_type = 'LINEAR'
  freq_min = -0.28
  freq_max = 0.28
  n_freq = 5
/





Note the additional nad_search='CONTOUR'
parameter in the &num namelist group, which stipulates that
the contour method should be used; and, the fact that there are now
two &scan namelist groups, one with axis='REAL' and the other with axis='IMAG'.

Footnotes



[1]
(1,2,3)
This is the default setting; you don’t need to include it explicitly.



[2]
(1,2)
This is optional; leave it out if you want gyre to perform adiabatic calculations as well.







            

          

      

      

    

  

    
      
          
            
  
Tidal Forcing

This section discusses how to evaluate the stellar response (fluid
displacements and perturbations) to tidal forcing, using the
gyre_tides frontend. The response data can be used to
calculate the secular rates-of-change of orbital elements, or to
synthesize a light curve for a tidally distorted star.


Overview

As discussed in the Tidal Effects section, the tidal gravitational
potential (16) of an orbiting companion can be
expressed as a superposition of partial potentials
\(\PhiTlmk\). For a given &tide namelist group appearing
in the namelist input file, gyre_tides solves for the
response of the star to each term in the superposition.



Truncating the Sums

Although the sums appearing in eqn. (16) are formally
infinite, the terms with large harmonic degree \(\ell\) and/or
orbital harmonic \(k\) typically produce a negligible
response. gyre_tides offers a couple of approaches for
truncating the sums by dropping these terms. The simplest is to set
limits on the maximum values of the indices, through the
l_max, k_min and k_max parameters of the
&tide namelist group (if desired, minimum values can also be
set using the corresponding l_min and k_min
parameters).

A slightly more sophisticated approach is to set these parameters to
large-ish values (say, a few hundred), and then also set one or both
of the y_T_thresh_abs and y_T_thresh_rel
parameters. These establish a threshold on the magnitude of


\[\yT \equiv \frac{\tPhiTlmk}{GM/R}\]

for a given tidal partial potential \(\tPhiTlmk\) (see
eqn. 18) to be included in calculations; if
\(|\yT|\) does not meet this threshold, it is ignored.



Optimizing Grids

During the iterative refinement process
used in setting up spatial grids, the refinement criteria are
evaluated for every partial tide under consideration. If the
co-rotating forcing frequency


\[\sigmac \equiv k \Oorb - m \Orot\]

associated with a specific partial tidal potential is small compared
to the dynamical frequency of the star, many levels of refinement will
occur. While this is exactly what one wants in oscillation
calculations (because low-frequency modes have short spatial
wavelengths), it often isn’t necessary in tidal calculations because
the response of a star to low-frequency forcing is the long-wavelength
equilibrium tide.

One way of preventing over-refinement due to low-frequency partial
potentials is to set the omega_c_thresh parameter in the
&tide namelist group. This establishes a threshold on the
dimensionless frequency \(\omegac \equiv \sigmac \,
\sqrt{R^{3}/GM}\); partial potentials with \(|\omegac|\) below this
threshold are treated as static tides (\(\omegac=0\)), and are not
considered during the iterative refinement process.

An alternative approach is to avoid iterative refinement altogether,
instead obtaining the spatial grid from an external file (see the
'FILE' option of the scaffold_src parameter, in the
Grid Parameters section). This is the most flexible approach, but
creating a grid that will adequately resolve the response to each
partial potential requires some care.



Output Files

gyre_tides writes response data to summary and detail
files. One detail file is created for each partial potential
evaluated, and the summary file collects together global data for all
partial potentials across all &tide namelist groups. The
id output item can be used to determine which group a given
response belongs to.

The following Python code demonstrates how the summary data might be
used to evaluate the secular rates-of-change of orbital semi-major
axis, eccentricity, and argument of periastron, and the stellar
torque. The expression for e_dot mirrors eqn. (23) of
Sun et al. (2023) [https://ui.adsabs.harvard.edu/abs/2023ApJ...945...43S/abstract], and for J_dot eqn. (25) ibid.

import pygyre as pg
import numpy as np

# Read summary file from gyre_tides

s = pg.read_output('summary.h5')

# Extract the first set of responses

sg = s.group_by('id').groups[0]

Omega_orb = sg['Omega_orb']               
R_a = sg['R_a']
q = sg['q']

eps_T = R_a**3*q
    
l = sg['l']
m = sg['m']
k = sg['k']

cbar = sg['cbar']
        
Fbar = -0.5*sg['eul_Phi_ref']/(cbar*eps_T)

x = sg['x_ref']

Gbar_1 = sg['Gbar_1']
Gbar_2 = sg['Gbar_2']
Gbar_3 = sg['Gbar_3']
Gbar_4 = sg['Gbar_4']

# Evaluate secular rates-of-change

kap = np.empty(len(l))

for i in range(len(kap)):
    if k[i] == 0:
        if m[i] == 0:
            kap[i] = 0.5
        elif m[i] > 0 and m[i] <= l[i]:
            kap[i] = 1.
        else:
            kap[i] = 0.
    elif k[i] > 0:
        kap[i] = 1.
    else:
        kap[i] = 0.

# Semi-major axis (units of R per dynamical timescale)

a_dot = np.sum(4. * Omega_orb * q / R_a * 
    (R_a)**(l+3) * (x)**(l+1) * kap * Fbar.imag * Gbar_2)

# Eccentricity (units of per dynamical timescale)

e_dot = np.sum(4. * Omega_orb * q * 
    (R_a)**(l+3) * (x)**(l+1) * kap * Fbar.imag * Gbar_3)

# Argument of periastron (units of radians per dynamical timescale)

pom_dot = np.sum(4. * Omega_orb * q * 
    (R_a)**(l+3) * (x)**(l+1) * kap * Fbar.real * Gbar_1)

# Angular momentum (units of GM^2/R)

J_dot = np.sun(4. * q**2 * R_a *
    (R_a)**(l+3) * (x)**(l+1) * kap * Fbar.imag * Gbar_4)









            

          

      

      

    

  

    
      
          
            
  
Including Rotation

This section discusses how to include the effects of rotation in GYRE
calculations. See the Rotation Effects section for further details of
GYRE’s rotation treatment.


Setting the Rotation Rate

There are two different ways to define the rotation angular frequency
\(\Orot\), via parameters in the &rot namelist group.


	If Omega_rot_source = 'MODEL', then differential
rotation is assumed with a spatially varying \(\Orot\)
obtained from the stellar model. If the model doesn’t have this
capability (see the Model Capabilities section), then \(\Orot\)
is set to zero throughout the star.


	If Omega_rot_source = 'UNIFORM', then uniform
rotation is assumed with a spatially constant \(\Orot\) set by
the Omega_rot and Omega_rot_units parameters.






Incorporating Doppler Effects

The Doppler Shift effect is incorporated automatically
whenever calculations are performed with non-zero \(\Orot\) and
mode azimuthal order \(m\). To disable this effect, set
m= 0 in the &mode namelist group.



Incorporating Coriolis Effects

Incorporating the effects of the Coriolis force can be done using a
perturbative treatment or a
non-perturbative treatment. In the former
case the effects are be applied as a post-calculation correction to
non-rotating eigenfrequencies (see the domega_rot output item
in the Summary Files and Detail Files sections). In the
latter case, the traditional approximation of rotation (TAR) can be
enabled by setting coriolis_method='TAR' in the
&rot namelist group.

The TAR solution family is controlled by the
rossby parameter of the &rot namelist group; set to
.TRUE. for the Rossby family, and to .FALSE. for the
gravito-acoustic family.





            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions

This is a list of Frequently Asked Questions about GYRE. Suggestions for new entries are always most welcome!


How Do I…


	…obtain the GYRE source code?
	See the Download section.



	…compile GYRE?
	See the Compile section.



	…compile a statically linked version of GYRE?
	Set the STATIC environment variable to yes prior to
compilation. Note that this currently only works on Linux platforms,
and when then CRMATH environment variable is set to
no.






	…run GYRE on multiple cores?
	GYRE can take advantage of multiple
processors in a shared-memory (multicore) computer through its use
of OpenMP [https://en.wikipedia.org/wiki/OpenMP]. This functionality should be enabled by
default, but you can nevertheless force it by setting the OMP
environment variable to yes prior to compilation. Then, set the
OMP_NUM_THREADS environment variable to the number of threads
you want to use.






	…run GYRE on a cluster?
	GYRE can take advantage of multiple nodes in a computer cluster
through its use of MPI [https://en.wikipedia.org/wiki/Message_Passing_Interface]. To enable this functionality,
set the MPI environment variable to yes prior to
compilation. Note that you’ll need to use a version of the
MESA Software Development Kit [http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk] built with MPI
support for your cluster’s specific networking technology (e.g.,
Infiniband [https://en.wikipedia.org/wiki/Infiniband]); contact the GYRE team for more details.



	…pronounce GYRE?
	With a soft ‘g’ rhyming with ‘wire’, like this.



	…cite GYRE?
	See the Citing GYRE section.



	…get support for a problem I’m having?
	Post a message to one of the GYRE discussion forums [http://www.astro.wisc.edu/~townsend/gyre-forums/].



	…contact the GYRE team?
	Send an email to Rich Townsend.



	…access the documentation for older releases?
	Click on the ‘v:…’  dropdown menu at the bottom of the left-hand
panel. Note that this menu is only available when viewing the
documentation [https://gyre.readthedocs.io/en/stable/] on Read
the Docs [https://readthedocs.org/]; it isn’t available in a
local build within the $GYRE_DIR/doc/sphinx directory.
Also, the legacy documentation is a work-in-progress, and remains
incomplete.







What Does…


	…’Failed during deflate narrowout-of-domain frequency’ mean?
	This is an indication that GYRE’s root solver wandered out of bounds
when trying to find a complex root of the discriminant function. Try running
with a different choice of diff_scheme parameter
(MAGNUS_GL2 seems to be the most robust), and/or using
contour method instead (see the Non-Adiabatic Oscillations chapter).







Why Does…


	…the error ‘Illegal Instruction’ arise on MacOS when running with large grid sizes?
	This behavior is typically caused by overflow of the OpenMP stack
(for more info see here [https://stackoverflow.com/questions/13870564/gfortran-openmp-segmentation-fault-occurs-on-basic-do-loop]).
Try setting the OMP_STACKSIZE environment variable to 500K or 1M.









            

          

      

      

    

  

    
      
          
            
  
Troubleshooting

This chapter discusses various problems that can arise during normal
GYRE operation, and steps that can be taken to resolve them.



	Missing Modes
	Insufficient Frequency Resolution

	Insufficient Spatial Resolution

	Non-adiabatic Effects





	Duplicated Modes
	Bad Stellar Model

	Non-adiabatic Effects





	Long Runtimes
	gyre

	gyre_tides












            

          

      

      

    

  

    
      
          
            
  
Missing Modes

For adiabatic oscillation calculations using gyre, the
radial order \(\numpg\) of modes found should be
monotonic-increasing[1]. Departures from this behavior can
occur for a number of reasons.


Insufficient Frequency Resolution

If the frequency grid has insufficient resolution,
then gyre can skip modes during the bracketing phase, as
discussed in the Limitations of the Numerical Method section. The signature of
insufficient frequency resolution is that an even number of
consecutive modes is missed — most often, an adjacent pair of modes.

To fix this problem, first check that the distribution of points in
the frequency grids matches (approximately) the expected distribution of
mode eigenfrequencies:


	In the asymptotic limit of large radial order, p modes are uniformly
distributed in frequency (see, e.g.,
Aerts et al., 2010 [https://ui.adsabs.harvard.edu/abs/2010aste.book.....A/abstract]). Hence, to search for these modes set
grid_type='LINEAR' in the &scan
namelist group(s).


	Likewise, in the asymptotic limit of large radial order, g modes are
uniformly distributed in period. Hence, to search for these modes
set grid_type='INVERSE' in the &scan
namelist group(s).


	For rotating stars, the asymptotic behaviors mentioned apply in the
co-rotating reference frame, not in the inertial reference
frame. So, be sure to also set grid_frame ='COROT_I'|'COROT_O' in the &scan
namelist group.




Next, try increasing the number of points in the frequency grids,
simply by increasing the n_freq parameter in the
&scan namelist group(s).


Tip

A good rule of thumb is that n_freq should be around 5
times larger than the number of modes expected to be found.





Insufficient Spatial Resolution

If the spatial grid has insufficient resolution,
then certain modes can simply be absent from the (finite) set of
distinct numerical solutions, as discussed in the
Limitations of the Numerical Method section. The signature of insufficient spatial
resolution is that modes that are found have radial orders
comparable to the number of grid points \(N\) in the grid; and
that the eigenfunctions of these modes are barely resolved
(cf. Fig. 5).

To fix this problem, first check that the w_osc,
w_exp and w_ctr weighting parameters in the
&grid namelist group are set to reasonable values (see the
Recommended Values section). If that doesn’t improve things, try
gradually increasing both w_osc and w_ctr.



Non-adiabatic Effects

When undertaking non-adiabatic calculations,
modes can be mis-classified or completely missed. The former situation
arises because the expectation of monotonic-increasing \(\numpg\)
formally applies only to adiabatic oscillations; while it can also
work reasonably well for weakly non-adiabatic cases, there are no
guarantees. If mis-classification does occur, then it must be fixed
manually by determining which adiabatic mode the problematic
non-adiabatic mode corresponds to.

Missing modes occur for a different reason: if a mode has a large
growth rate, then the usual adiabatic method
for establishing initial trial roots can fail to find it. In such
cases, the alternative contour method performs
very well.

Footnotes



[1]
The sole exception is \(\ell=1\) modes, where
\(\numpg=0\) is skipped due to the way the
Takata 2006b [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..893T/abstract] classification scheme is set
up.







            

          

      

      

    

  

    
      
          
            
  
Duplicated Modes

Sometimes two oscillation modes with the same \(\numpg\) are found
during a gyre calculation. This violates the expectation
that \(\numpg\) be monotonic-increasing, and can happen for a few
reasons.


Bad Stellar Model

If the input stellar doesn’t conserve mass properly, then one or more
bogus (unphysical) modes can appear with the same \(\numpg\) as an
existing mode, but a significantly different frequency. Such modes can
also be spotted because their radial order is very different from the
adjacent-in-frequency modes.

Bogus modes arise because the input stellar model doesn’t conserve
mass. GYRE` assumes that the density \(\rho\) and interior mass
\(M_{r}\) are related by equation 5. Given that there
are many different ways to discretize this equation, there is a
certain amount of numerical ‘slop’ that arises when going from
discrete form assumed in the stellar evolution code that generated the
model (e.g., MESA) through to the discrete form implicitly assumed by
GYRE. This slop can sometimes produce bogus modes, and the fix is to
re-create the model with a higher spatial resolution.

Another possibility arises if the input stellar model contains density
discontinuities that aren’t properly marked using double points. Often, these discontinuities can be diagnosed
by plotting the \(I_0\) or \(I_1\) first integrals (for radial
and dipole modes, respectively) as a function of radius. These first
integrals should vanish everywhere (as shown by
Takata 2006a [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..759T/abstract]), but will typically show abrupt jumps to
non-zero values at the location of unmarked discontinuities. The fix
is to re-create the model with double points inserted as necessary; in
the case of MESA models, this can be achieved using the
add_double_points_to_pulse_data parameter of the
&controls namelist group.



Non-adiabatic Effects

When non-adiabatic effects cause a mode to be mis-classified (as
discussed in the Missing Modes section), often the incorrect
\(\numpg\) value duplicates that of another mode. As before, a
mis-classification must be fixed manually by determining which
adiabatic mode the problematic non-adiabatic mode corresponds to.





            

          

      

      

    

  

    
      
          
            
  
Long Runtimes


gyre

Long runtimes with the gyre frontend occur when the
spatial grid and/or frequency grid contain many points. The execution time to process a
single &mode namelist group can be approximated by


\[\tau \approx C_{\rm b} N M + C_{\rm s} N N_{\rm m},\]

where \(N\) is the number of spatial points, \(M\) is the
number of frequency points, \(N_{\rm m}\) is the number of modes
found, and \(C_{\rm b}\) and \(C_{\rm s}\) are constants. The
first (\(C_{\rm b}\)) term represents the time take to bracket
roots of the discriminant function, and the second (\(C_{\rm s}\))
the time taken to solve for these roots (see the
Numerical Methods chapter for details).

The key to ensuring reasonable runtimes lies in judicious choice of
parameters in the &scan namelist group(s). The n_freq
parameter obviously has an impact on \(\tau\), as it directly sets
\(M\). However, the freq_min and freq_max
parameters also influence \(\tau\), due to the way the spatial
grid is constructed. If the frequency scan includes parts of the
star’s oscillation spectrum containing modes with very large radial
orders (whether p modes or g modes), then GYRE’s iterative
refinement algorithm will insert many grid
points in order to resolve the modes’ wavefunctions. This can
ultimately lead to huge \(N\) and very long runtimes.



gyre_tides

The narrative is similar with the gyre_tides frontend,
although there are no frequency grids involved. The execution time to
process a single &orbit namelist group can be approximated by


\[\tau \approx C_{\rm t} N\]

where \(C_{\rm t}\) is a constant.





            

          

      

      

    

  

    
      
          
            
  
Installation

This chapter discusses GYRE installation in detail. If you just want
to get up and running, have a look at the Quick Start chapter.


Pre-Requisites

To compile and run GYRE, you’ll need the following software
components:


	A modern (2003+) Fortran compiler


	The BLAS [https://www.netlib.org/blas] linear algebra library


	The LAPACK [https://www.netlib.org/lapack] linear algebra library


	The LAPACK95 [https://www.netlib.org/lapack95] Fortran 95
interface to LAPACK


	The HDF5 [https://www.hdfgroup.org/solutions/hdf5/] data management library


	The crlibm [https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804] correctly rounded math library


	The crmath [https://github.com/rhdtownsend/crmath] Fortran 2003 interface to crlibm


	An OpenMP-aware version of the ODEPACK [https://www.netlib.org/odepack] differential equation library (optional)




On Linux and MacOS platforms, these components are bundled together in
the MESA Software Development Kit (SDK), which can be downloaded from
the MESA SDK [http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk] homepage. Using this SDK is strongly
recommended.



Building GYRE


Download

Download the GYRE source code [https://github.com/rhdtownsend/gyre/releases/download/v7.1/gyre-7.1.tar.gz], and unpack it
from the command line using the tar utility:

tar xf gyre-7.1.tar.gz



Set the GYRE_DIR environment variable with the path to the
newly created source directory; this can be achieved, e.g., using the
realpath command[1]:

export GYRE_DIR_DIR=$(realpath gyre-7.1)





Compile

Compile GYRE using the make utility:

make -j -C $GYRE_DIR



(the -j flags tells make to use multiple cores, speeding up the build).



Test

To check that GYRE has compiled correctly and gives reasonable
results, you can run the calculation test suite via the command

make -C $GYRE_DIR test



The initial output from the tests should look something like this:

TEST numerics (OpenMP)...
 ...succeeded
TEST numerics (band matrix)...
 ...succeeded
TEST numerics (*_DELTA frequency units)...
 ...succeeded
TEST numerics (rotation, Doppler shift)...
 ...succeeded
TEST numerics (rotation, traditional approximation)...
 ...succeeded





If things go awry, consult the Troubleshooting
chapter.




Custom Builds

Custom builds of GYRE can be created by setting certain environment
variables, and/or variables in the file
$GYRE_DIR/src/build/Makefile, to the value yes. The
following variables are currently supported:


	DEBUG
	Enable debugging mode (default no)



	OMP
	Enable OpenMP parallelization (default yes)



	MPI
	Enable MPI parallelization (default no)



	DOUBLE_PRECISION
	Use double precision floating point arithmetic (default yes)



	CRMATH
	Use correctly rounded math functions (default yes)



	IEEE
	Use Fortran IEEE floating point features (default no)



	FPE
	Enable floating point exception checks (default yes)



	HDF5
	Include HDF5 support (default yes)



	EXPERIMENTAL
	Enable experimental features (default no)





If a variable is not set, then its default value is assumed.



Git Access

Sometimes, you’ll want to try out new features in GYRE that haven’t
yet made it into a formal release. In such cases, you can check out
GYRE directly from the https://github.com/rhdtownsend/gyre git repository on
GitHub [https://github.com/]:

git clone https://github.com/rhdtownsend/gyre.git



However, a word of caution: GYRE is under constant development, and
features in the main (master) branch can change without warning.

footnote



[1]
The realpath command is included in the GNU
CoreUtils [https://www.gnu.org/software/coreutils/]
package. Mac OS users can install CoreUtils using
MacPorts [https://www.macports.org/] or Homebrew [https://brew.sh/].







            

          

      

      

    

  

    
      
          
            
  
Namelist Input Files

This chapter describes the various groups that can appear in the input
files read by the GYRE frontends. These files are
in Fortran’s namelist format [https://cyber.dabamos.de/programming/modernfortran/namelists.html],
a simple text-based format containing one or more namelist
groups. Each group begins with the line &name (where name
is the name of the group); a list of parameter-value pairs then
follows, and the group ends with a slash /.



	Constants

	Grid Parameters

	Stellar Model Parameters

	Mode Parameters

	Numerical Parameters

	Orbital Parameters

	Oscillation Parameters

	Output Parameters

	Rotation Parameters

	Frequency Scan Parameters

	Tidal Parameters








            

          

      

      

    

  

    
      
          
            
  
Constants

The &constants namelist group defines various physical
constants, as follows:


	G_GRAVITY
	Gravitational constant \(G\)



	C_LIGHT
	Speed of light in vacuo \(c\)



	A_RADIATION
	Radiation constant \(a\)



	M_SUN
	Solar mass \(\Msun\)



	R_SUN
	Solar radius \(\Rsun\)



	L_SUN
	Solar luminosity \(\Lsun\)



	GYRE_DIR
	Top-level GYRE directory; overrides the GYRE_DIR
environment variable





All of these constants are in cgs units (where applicable), and the
default values are defined in
$GYRE_DIR/src/common/gyre_constants.fpp.




            

          

      

      

    

  

    
      
          
            
  
Grid Parameters

The &grid namelist group defines the parameters used to set up
the spatial grid, as follows:


	scaffold_src (default 'MODEL')
	Source for scaffold grid; one of:


	'MODEL' : Obtained from the stellar model


	'FILE' : Read from a file (see the file and
file_format parameters)






	x_i (default based on model grid)
	Inner boundary coordinate of calculation grid



	x_o (default based on model grid)
	Outer boundary coordinate of calculation grid



	w_osc (default 0)
	Oscillatory weighting parameter \(w_{\rm osc}\)



	w_exp (default 0)
	Exponential weighting parameter \(w_{\rm exp}\)



	w_ctr (default 0)
	Center weighting parameter \(w_{\rm ctr}\)



	w_thm (default 0)
	Thermal weighting parameter \(w_{\rm thm}\)



	w_str (default 0)
	Structural weighting parameter \(w_{\rm str}\)



	dx_min (default SQRT(EPSILON(1._WP)))
	Minimum spacing of grid points



	dx_max (default HUGE(0._WP))
	Maximum spacing of grid points



	n_iter_max (default 32)
	Maximum number of refinement iterations



	resolve_ctr (default .TRUE.)
	Flag to resolve central evanescent region



	file (default '')
	Name of file containing scaffold grid data (when
scaffold_src='FILE')



	file_format (default '')
	Format of file containing scaffold grid data (when
scaffold_src='FILE'); one of:


	'TEXT': text file with one abscissa value per line


	'DETAIL': detail file with
abscissa values provided in x dataset






	tag_list (default '', which matches all)
	Comma-separated list of &mode tags to match





See the Spatial Grids section for further details, in
particular a discussion of how the weighting (w_*) parameters
work.




            

          

      

      

    

  

    
      
          
            
  
Stellar Model Parameters

The &model namelist group defines stellar model parameters, as
follows:


	model_type
	Type of model to use; one of:


	'HOM' : Homogeneous compressible model


	'POLY' : Polytropic model read from external file


	'EVOL' : Evolutionary model read from external file






	file
	Name of file (when model_type= 'POLY'|'EVOL')



	file_format
	Format of file (when model_type= 'EVOL'); one of


	'AMDL' : AMDL-format binary file


	'B3' : B3-format HDF5 file


	'FAMDL' : FAMDL-format text file


	'FGONG' : FGONG-format text file


	'GSM' : GSM-format HDF5 file


	'LOSC' : LOSC-format text file


	'MESA' : MESA GYRE-format text file


	'OSC' : OSC-format text file


	'WDEC' : WDEC-format text file






	data_format (default '', indicates auto-select)
	Fortran format specifier for data read from OSC-, FGONG- and FAMDL-format files



	deriv_type (default 'MONO')
	Cubic interpolation derivatives type (when model_type='POLY'|'EVOL'); one of


	'NATURAL' : Natural (spline) derivatives


	'FINDIFF' : Finite-difference derivatives


	'MONO' : Monotonized derivatives (default)






	Gamma_1 (default 5/3)
	First adiabatic exponent (when model_type='HOM')



	grid_type (default 'UNI')
	Model grid type (when model_type='HOM'); one of


	'UNI' : Uniform spacing


	'GEO' : Geometric spacing


	'LOG' : Logarithmic spacing






	n (default 10)
	Number of points in model grid (when model_type='HOM')



	s (default 1)
	Skewness parameter for model grid (when model_type='HOM' and grid_type='GEO'|'LOG')



	x_i (default 0)
	Inner boundary coordinate of model grid (when model_type='HOM')



	x_o (default 1)
	Outer boundary coordinate of model grid (when model_type='HOM')



	dx_snap (default 0)
	Threshold for snapping model points together, when
model_type is 'EVOL'. If a pair of points are
separated by less than dx_snap, they are snapped together.



	add_center (default .TRUE.)
	Flag to add a center point to the model (when model_type='EVOL'|'POLY'). If a point does not already
exist at the origin, then one is added



	repair_As (default .FALSE.)
	Flag to repair inaccuracies in the dimensionless Brunt-Väisälä
frequency at density discontinuities








            

          

      

      

    

  

    
      
          
            
  
Mode Parameters

The &mode namelist group defines mode parameters, as follows:


	l (default 0)
	Harmonic degree \(\ell\)



	m (default 0)
	Azimuthal order \(m\)



	n_pg_min (default -HUGE)
	Filter for minimum radial order (applies only to adiabatic calculations)



	n_pg_max (default +HUGE)
	Filter for maximum radial order (applies only to adiabatic calculations)



	tag
	Tag for controlling selection of other parameters








            

          

      

      

    

  

    
      
          
            
  
Numerical Parameters

The &num namelist group defines numerical method parameters; the
input file can contain one or more, but only the last (tag-matching) one is
used. Allowable fields are:


	diff_scheme (default 'COLLOC_GL2')
	Difference equation scheme; one of:


	'COLLOC_GL2' : Second-order Gauss-Legendre collocation


	'COLLOC_GL4' : Fourth-order Gauss-Legendre collocation


	'COLLOC_GL6' : Sixth-order Gauss-Legendre collocation


	'MAGNUS_GL2' : Second-order Gauss-Legendre Magnus


	'MAGNUS_GL4' : Fourth-order Gauss-Legendre Magnus


	'MAGNUS_GL6' : Sixth-order Gauss-Legendre Magnus


	'MIRK' : Fourth-order mono-implicit Runge-Kutta (experimental)


	'TRAPZ' : Trapezoidal, with the prescription by
Sugimoto (1970) [https://ui.adsabs.harvard.edu/abs/1970ApJ...159..619S/abstract] for non-adiabatic cases






	r_root_solver (default 'BRENT')
	Root solver for real arithmetic; one of:


	'BRENT' : Brent’s method






	c_root_solver (default 'RIDDERS')
	Root solver for complex arithmetic; one of


	'RIDDERS' : Complex Ridders’ method


	'SECANT' : Secant method


	'SIMPLEX' : Simplex method






	n_iter_max (default 50)
	Maximum number of iterations in root-finding algorithm



	matrix_type (default 'BLOCK’)
	Storage type of system matrix; one of


	'BAND' : Band-structured


	'BLOCK' : Block-structured






	deflate_roots (default .TRUE.)
	Flag to use root deflation, which can avoid the same eigenfrequency
being found multiple times



	restrict_roots (default .TRUE.)
	Flag to check each roots found lies within the bounds of the frequency scan



	ad_search (default 'BRACKET')
	Initial search method for adiabatic calculations; one of


	'BRACKET' : Bracket sign changes in the discriminant function






	nad_search (default 'AD')
	Initial search method for non-adiabatic calculations; one of


	'AD' : Use adiabatic eigenfrequencies


	'MINMOD' : Find minima in the modulus of the discriminant function, along the real-\(\omega\) axis


	'CONTOUR' : Find intersections between real and imaginary zero-contours of the discriminant function




See the Non-Adiabatic Oscillations chapter for more details about these search methods.



	tag_list (default '', which matches all)
	Comma-separated list of &mode tags to match








            

          

      

      

    

  

    
      
          
            
  
Orbital Parameters

The &orbit namelist group defines orbital
parameters, as follows:


	Omega_orb (default 1)
	Orbital angular frequency



	Omega_orb_units (default 'NULL')
	Units of Omega_orb; one of:


	'NONE' : Dimensionless angular frequency


	'HZ' : Linear frequency in Hz[1]


	'UHZ' : Linear frequency in \(\mu\)Hz[1]


	'RAD_PER_SEC' : Angular frequency in radians per second[1]


	'CYC_PER_DAY' : Linear frequency in cycles per day[1]


	'CRITICAL' : Fraction of the Roche critical rate[1]






	q (default 1)
	Ratio of secondary mass to primary mass



	e (default 0)
	Orbital eccentricity



	tag_list (default '', which matches all)
	Comma-separated list of &tide tags to match





Footnotes



[1]
(1,2,3,4,5)
This option is available only for stellar models with D capability






            

          

      

      

    

  

    
      
          
            
  
Oscillation Parameters

The &osc namelist group defines oscillation parameters, as follows:


	inner_bound (default 'REGULAR')
	Inner boundary conditions; one of:


	'REGULAR' : Regularity-enforcing (only valid when inner grid point is at \(x = 0\))


	'ZERO_R' : Zero radial displacement (only valid when inner grid point is at \(x \ne 0\))


	'ZERO_H' : Zero horizontal displacement (only valid when inner grid point is at \(x \ne 0\))






	outer_bound (default 'VACUUM')
	Outer boundary conditions; one of:


	'VACUUM' : Vanishing surface density


	'DZIEM' : Formulation following Dziembowski (1971) [https://ui.adsabs.harvard.edu/abs/1971AcA....21..289D/abstract]


	'UNNO' : Formulation following Unno et al. (1989) [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract]


	'JCD' : Formulation following Jørgen Christensen-Dalsgaard (ADIPLS)


	'ISOTHERMAL' : Formulation based on local dispersion analysis for isothermal atmosphere


	'GAMMA' : Vanishing displacement and derivative at outer boundary, intended for use with \(\gamma\) modes (isolated g modes; see Ong & Basu, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...898..127O/abstract])






	outer_bound_cutoff (default '')
	Outer boundary conditions to use when evaluating cutoff frequencies (see freq_units); same options
as outer_bound, and if left blank then takes its value from outer_bound



	outer_bound_branch (default 'E_NEG')
	Dispersion relation solution branch to use for outer boundary
conditions (when outer_bound='UNNO'|'JCD'|'ISOTHERMAL');
one of


	'E_NEG' : Outward-decaying energy density


	'E_POS' : Outward-growing energy density


	'F_NEG' : Outward energy flux


	'F_POS' : Inward energy flux


	'V_NEG' : Outward phase velocity


	'V_POS' : Inward phase velocity






	variables_set (default 'GYRE')
	Dependent variables in oscillation equations; one of:


	'GYRE' : GYRE formulation, as described in the Dimensionless Formulation section


	'DZIEM' : Formulation following Dziembowski (1971) [https://ui.adsabs.harvard.edu/abs/1971AcA....21..289D/abstract]


	'JCD' : Formulation following Jørgen Christensen-Dalsgaard (ADIPLS)


	'MIX' : Mixed formulation ('JCD' for \(y_{3,4}\), 'DZIEM' for \(y_{1,2}\))


	'LAGP' : Lagrangian pressure perturbation formulation






	alpha_grv (default 1.)
	Scaling factor for gravitational potential perturbations (see the \(\alphagrv\)
entry in the Physics Switches section)



	alpha_thm (default 1.)
	Scaling factor for the thermal timescale (see the \(\alphathm\) entry
in the Physics Switches section)



	alpha_hfl (default 1.)
	Scaling factor for horizontal flux perturbations (see the \(\alphahfl\)
entry in the Physics Switches section)



	alpha_gam (default 1.)
	Scaling factor for g-mode isolation (see the \(\alphagam\) term in
entry in the Physics Switches section)



	alpha_pi (default 1.)
	Scaling factor for p-mode isolation (see the \(\alphapi\) term in
entry in the Physics Switches section)



	alpha_kar (default 1.)
	Scaling factor for opacity density partial derivative (see the \(\alphakar\)
entry in the Physics Switches section)



	alpha_kat (default 1.)
	Scaling factor for opacity temperature partial derivative (see the \(\alphakat\)
entry in the Physics Switches section)



	alpha_rht (default 0.)
	Scaling factor for time-dependent term in radiative heat equation (see the
\(\alpharht\) entry in the Physics Switches section)



	alpha_trb (default 0.)
	Scaling factor for the turbulent mixing length (see the
\(\alphatrb\) entry in the Physics Switches
section)



	inertia_norm (default 'BOTH')
	Inertia normalization factor; one of


	'RADIAL' : Radial amplitude squared, \(|\xi_{\rm r}|^{2}\), evaluated at x_ref


	'HORIZ' : Horizontal amplitude squared, \(|\lambda| |\xi_{\rm h}|^{2}\), evaluated at x_ref


	'BOTH' : Overall amplitude squared, \(|\xi_{\rm r}|^{2} + |\lambda| |\xi_{\rm h}|^{2}\), evaluated at x_ref






	time_factor (default 'OSC')
	Time-dependence factor in pulsation equations; one of:


	'OSC' : Oscillatory, \(\propto \exp(-{\rm i} \sigma t)\)


	'EXP' : Exponential, \(\propto \exp(-\sigma t)\)






	conv_scheme (default 'FROZEN_PESNELL_1')
	Scheme for treating convection; one of:


	'FROZEN_PESNELL_1' : Freeze convective heating altogether;
case 1 described by Pesnell (1990) [https://ui.adsabs.harvard.edu/abs/1990ApJ...363..227P/abstract]


	'FROZEN_PESNELL_4' : Freeze Lagrangian perturbation of convective luminosity;
case 4 described by Pesnell (1990) [https://ui.adsabs.harvard.edu/abs/1990ApJ...363..227P/abstract]






	zeta_scheme (default 'KAWALER')
	Scheme for evaluating dimensionless frequency weight function
\(\sderiv{\zeta}{x}\) and integral eigenfrequency
\(\omega_{\rm int}\); one of:


	'PESNELL' : Evaluate using eqn. (A5) of Pesnell (1987) [https://ui.adsabs.harvard.edu/abs/1987ApJ...314..598P/abstract]


	'KAWALER' : Evaluate using eqn. (7) of Kawaler et al. (1985) [https://ui.adsabs.harvard.edu/abs/1985ApJ...295..547K/abstract], as corrected by Townsend & Kawaler (2023) [https://ui.adsabs.harvard.edu/abs/2023RNAAS...7..166T/abstract]


	'KAWALER_GRAV': Evaluate using the g-mode part in eqn. (7) of Kawaler et al. (1985) [https://ui.adsabs.harvard.edu/abs/1985ApJ...295..547K/abstract]


	'DUPRET' : Evaluate using eqn. (1.71) of Dupret (2002, PhD thesis)






	deps_scheme (default 'MODEL')
	Scheme for calculating nuclear energy generation partials \(\epsnucrho\) and \(\epsnucT\); one of:


	'MODEL' : Use values from model


	'FILE' : Use complex (phase-lagged) values from separate file






	deps_file (default '')
	Name of epsilon partial derivatives file (when deps_scheme='FILE')



	deps_file_format (default 'WOLF')
	Format of epsilon partial derivative file (when deps_scheme='FILE'); one of:


	'WOLF' : Format used in preparation of Wolf et al. (2018) [https://ui.adsabs.harvard.edu/abs/2018ApJ...855..127W/abstract]






	x_ref (default 1 or outer grid point, whichever is smaller)
	Reference fractional radius for photosphere, normalizations etc.



	x_atm (default -1, implying outer grid point)
	Fractional radius for convection-zone crossover point of \(\pi/\gamma\) modes (isolated p and g modes; see Ong & Basu, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...898..127O/abstract])



	adiabatic (default .TRUE.)
	Flag to perform adiabatic calculations



	nonadiabatic (default .FALSE.)
	Flag to perform non-adiabatic calculations



	quasiad_eigfuncs (default .FALSE.)
	Flag to calculate quasi-adiabatic entropy/luminosity eigenfunctions
during adiabatic calculations



	reduce_order (default .TRUE.)
	Flag to reduce the order of the adiabatic radial-pulsation
equations from 4 to 2



	tag_list (default '', which matches all)
	Comma-separated list of &mode tags to match








            

          

      

      

    

  

    
      
          
            
  
Output Parameters

The &ad_output, &nad_output and &tides_output
namelist groups determine the output produced at the end of a run (the
first two for the adiabatic and non-adiabatic calculation stages of
gyre; the third for gyre_tides). Parameters are
as follows:


	summary_file (default '')
	Name of summary file



	summary_file_format (default 'HDF')
	Format of summary file; one of


	'HDF' : HDF5 file


	'TXT' : Text file






	summary_item_list (default 'l,n_pg,omega,freq')
	Comma-separated list of output items to write to summary file; see the
Summary Files section for possible choices



	summary_filter_list (default '')
	Comma-separated list of filter criteria for summary files; see the
Output Filters section for possible choices



	detail_template (default '')
	Name template of detail files. Names are generated using the following pattern
substitutions:


	'%ID' : Unique mode index, formatted in fixed-width field


	'%id' : Same as '%ID', but formatted in variable-width field


	'%L' : Harmonic degree \(\ell\), formatted in fixed-width field


	'%l' : Same as '%L', but formatted in variable-width field


	'%M' : Azimuthal order \(m\), formatted in fixed-width field


	'%m' : Same as '%M', but formatted in variable-width field


	'%N' : Radial order \(n_{\rm pg}\), formatted in fixed-width field


	'%n' : Same as '%N', but formatted in variable-width field


	'%P' : Acoustic wave winding number \(n_{\rm p}\), formatted in fixed-width field


	'%p' : Same as '%P', but formatted in variable-width field


	'%G' : Gravity wave winding number \(n_{\rm g}\), formatted in fixed-width field


	'%g' : Same as '%G', but formatted in variable-width field






	detail_file_format (default 'HDF')
	Format of detail files; one of


	'HDF' : HDF5 file


	'TXT' : Text file






	detail_item_list (default 'l,n_pg,omega,freq,x,xi_r,xi_h')
	Comma-separated list of output items to write to detail files; see the
Detail Files section for possible choices



	detail_filter_list (default '')
	Comma-separated list of filter criteria for detail files; see the
Output Filters section for possible choices



	freq_units (default NONE)
	Units of freq output item; one of:


	'NONE' : Dimensionless angular frequency


	'HZ' : Linear frequency in Hz[1]


	'UHZ' : Linear frequency in \(\mu\)Hz[1]


	'RAD_PER_SEC' : Angular frequency in radians per second[1]


	'CYC_PER_DAY' : Linear frequency in cycles per day[1]


	'ACOUSTIC_DELTA' : Fraction of the asymptotic acoustic large frequency separation \(\Delta \nu\)


	'GRAVITY_DELTA' : Fraction of the asymptotic inverse gravity period separation \((\Delta P)^{-1}\)


	'UPPER_DELTA' : Greater of \(\Delta \nu\) and \((\Delta P)^{-1}\)


	'LOWER_DELTA' : Lesser of \(\Delta \nu\) and \((\Delta P)^{-1}\)


	'ACOUSTIC_CUTOFF' : Fraction of the acoustic cutoff frequency[1]


	'GRAVITY_CUTOFF' : Fraction of the gravity cutoff frequency[1]


	'ROSSBY_I' : Fraction of Rossby frequency at inner boundary


	'ROSSBY_O' : Fraction of Rossby frequency at outer boundary






	freq_frame (default INERTIAL)
	Frame of freq output item; one of:



	'INERTIAL' : Inertial frame


	'COROT_I' : Co-rotating frame at inner boundary


	'COROT_O' : Co-rotating frame at outer boundary









	label (default '')
	Textual label to add to all output files





Footnotes



[1]
(1,2,3,4,5,6)
This option is available only for stellar models with D capability






            

          

      

      

    

  

    
      
          
            
  
Rotation Parameters

The &rot namelist group defines rotational parameters, as
follows:


	coriolis_method (default 'NULL')
	Method used to treat the Coriolis force; one of:


	'NULL' : Neglect the Coriolis force


	'TAR' : Use the traditional approximation of rotation






	Omega_rot_source (default 'MODEL')
	Source for rotational angular frequency \(\Orot\); one of:


	'MODEL' : Differential rotation, with a spatially varying \(\Orot\)
obtained from the stellar model


	'UNIFORM' : Uniform rotation, with a spatially constant \(\Orot\) set
by the Omega_rot and Omega_rot_units parameters






	Omega_rot (default 0)
	Rotation angular frequency (when Omega_rot_source='UNIFORM')



	Omega_rot_units (default 'NULL')
	Units of Omega_rot (when Omega_rot_source='UNIFORM'); one of:


	'NONE' : Dimensionless angular frequency


	'HZ' : Linear frequency in Hz[1]


	'UHZ' : Linear frequency in \(\mu\)Hz[1]


	'RAD_PER_SEC' : Angular frequency in radians per second[1]


	'CYC_PER_DAY' : Linear frequency in cycles per day[1]


	'CRITICAL' : Fraction of the Roche critical rate[1]






	rossby (default .FALSE.)
	Flag to use Rossby solution family in TAR (when coriolis_method='TAR')



	complex_lambda (default .FALSE.)
	Flag to use complex arithmetic when evaluating the TAR angular eigenvalue \(\lambda\) (when coriolis_method='TAR')



	tag_list (default '', which matches all)
	Comma-separated list of &mode tags to match





Footnotes



[1]
(1,2,3,4,5)
This option is available only for stellar models with D capability






            

          

      

      

    

  

    
      
          
            
  
Frequency Scan Parameters

The &scan namelist group defines frequency grid parameters, as
follows:


	grid_type (default 'LINEAR')
	Distribution of frequency points; one of:


	'LINEAR' : Uniform in frequency


	'INVERSE' : Uniform in inverse frequency


	'FILE' : Read from file






	grid_frame (default 'INERTIAL')
	Reference frame in which grid_type applies; one of:


	'INERTIAL' : Inertial frame


	'COROT_I' : Co-rotating frame at inner boundary


	'COROT_O' : Co-rotating frame at outer boundary






	freq_min (default 1)
	Minimum frequency, when grid_type is 'LINEAR' or 'INVERSE'



	freq_max (default 10)
	Maximum frequency, when grid_type is 'LINEAR' or 'INVERSE'



	n_freq (default 10)
	Number of frequency points, when grid_type is 'LINEAR' or 'INVERSE'



	freq_units (default NONE)
	Units of freq_min and freq_max, when
grid_type is 'LINEAR' or 'INVERSE'; units
of read frequencies when grid_type is 'FILE'


	'NONE' : Dimensionless angular frequency


	'HZ' : Linear frequency in Hz[1]


	'UHZ' : Linear frequency in \(\mu\)Hz[1]


	'RAD_PER_SEC' : Angular frequency in radians per second[1]


	'CYC_PER_DAY' : Linear frequency in cycles per day[1]


	'ACOUSTIC_DELTA' : Fraction of the asymptotic acoustic large frequency separation \(\Delta \nu\)


	'GRAVITY_DELTA' : Fraction of the asymptotic inverse gravity period separation \((\Delta P)^{-1}\)


	'UPPER_DELTA' : Greater of \(\Delta \nu\) and \((\Delta P)^{-1}\)


	'LOWER_DELTA' : Lesser of \(\Delta \nu\) and \((\Delta P)^{-1}\)


	'ACOUSTIC_CUTOFF' : fraction of the acoustic cutoff frequency[1]


	'GRAVITY_CUTOFF' : fraction of the gravity cutoff frequency[1]


	'ROSSBY_I' : fraction of Rossby frequency (see eqn. 15) at inner boundary


	'ROSSBY_O' : fraction of Rossby frequency (see eqn. 15) at outer boundary






	freq_min_units (default '')
	Units of freq_min; same options as freq_units and overrides it if set



	freq_max_units (default '')
	Units of freq_max; same options as freq_units and overrides it if set



	freq_frame (default 'INERTIAL')
	Reference frame in which freq_min and freq_max are defined, when grid_type
is 'LINEAR' or 'INVERSE'; one of:



	'INERTIAL' : Inertial frame


	'COROT_I' : Co-rotating frame at inner boundary


	'COROT_O' : Co-rotating frame at outer boundary









	file
	File to read frequencies from, when grid_type is 'FILE'



	axis (default 'REAL’)
	Axis that scan applies to; one of


	'REAL' : Real axis


	'IMAG' : Imaginary axis






	tag_list (default '', which matches all)
	Comma-separated list of &mode tags to match





An input file can contain one or more &scan namelist group;
the points defined by each (tag-matching) group are merged together to
build the frequency grid. See the Frequency Grids section for
further details.

Footnotes



[1]
(1,2,3,4,5,6)
This option is available only for stellar models with D capability






            

          

      

      

    

  

    
      
          
            
  
Tidal Parameters

The &tide namelist group defines tidal parameters, as follows:


	y_T_thresh_abs (default 0.)
	Absolute threshold on dimensionless tidal potential \(y_{\rm T}\) for a partial tide to contribute



	y_T_thresh_rel (default 0.)
	Relative threshold on dimensionless tidal potential \(y_{\rm T}\) for a partial tide to contribute



	omega_c_thresh (default 0.)
	Threshold on dimensionless co-rotating frequency \(\omega_{\rm c}\) for a
partial tide to be treated as dynamic (rather than static)



	alpha_frq (default 1.)
	Scaling parameter \(\alphafrq\) for tidal forcing frequency



	l_min (default 2)
	Minimum harmonic degree \(\ell\) in spatial expansion of tidal potential



	l_max (default 2)
	Maximum harmonic degree \(\ell\) in spatial expansion of tidal potential



	m_min (default -HUGE)
	Minimum azimuthal order \(m\) in spatial expansion of tidal potential



	m_max (default HUGE)
	Maximum azimuthal order \(m\) in spatial expansion of tidal potential



	k_min (default -10)
	Minimum orbital harmonic \(k\) in temporal expansion of tidal potential



	k_max (default 10)
	Maximum orbital harmonic \(k\) in temporal expansion of tidal potential



	tag
	Tag for controlling selection of other parameters








            

          

      

      

    

  

    
      
          
            
  
Output Files

This chapter describes the summary and detail output files written
by the GYRE frontends.



	Summary Files
	Solution Data

	Observables

	Classification & Validation

	Perturbations

	Energetics & Transport

	Rotation

	Stellar Structure

	Tidal Response





	Detail Files
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Summary Files

Summary files collect together global properties, such as
eigenfrequencies and radial orders, of all solutions (modes, tidal
responses, etc.) found during a run. The specific data written to a
summary file are controlled by the summary_item_list
parameters of the &ad_output and &nad_output namelist
groups (gyre adiabatic and non-adiabatic calculations,
respectively) and the &tides_output namelist group
(gyre_tides calculations). These parameters specify the
items to be written, via a comma-separated list.

The following subsections describe the items that may appear in
summary_item_list, grouped together by functional area. For
each item, the corresponding math symbol is given (if there is one),
together with the datatype, and a brief description. Units (where
applicable) are indicated in brackets [].


Solution Data









	Item

	Symbol

	Datatype

	Description





	n_row

	\(N_{\rm row}\)

	integer

	number of rows in summary file, each corresponding to a mode found
(gyre) or a tidal response evaluated (gyre_tides)



	n

	\(N\)

	integer(n_row)

	number of spatial grid points



	omega

	\(\omega\)

	complex(n_row)

	dimensionless eigenfrequency








Observables









	Item

	Symbol

	Datatype

	Description





	freq

	—

	complex(n_row)

	dimensioned frequency; units and reference frame controlled by
freq_units and freq_frame parameters



	freq_units

	—

	string

	freq_units parameter



	freq_frame

	—

	string

	freq_frame parameter



	f_T

	\(f_{T}\)

	real(n_row)

	Effective temperature perturbation amplitude; evaluated using
eqn. 5 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]



	f_g

	\(f_{\rm g}\)

	real(n_row)

	Effective gravity perturbation amplitude; evaluated using
eqn. 6 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]



	psi_T

	\(\psi_{T}\)

	real(n_row)

	Effective temperature perturbation phase; evaluated using
eqn. 5 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]



	psi_g

	\(\psi_{\rm g}\)

	real(n_row)

	Effective gravity perturbation phase; evaluated using
eqn. 6 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]








Classification & Validation









	Item

	Symbol

	Datatype

	Description





	id

	—

	integer(n_row)

	unique mode index



	l

	\(\ell\)

	integer(n_row)

	harmonic degree



	l_i

	\(\ell_{\rm i}\)

	complex(n_row)

	effective harmonic degree at inner boundary



	m

	\(m\)

	integer(n_row)

	azimuthal order



	n_p

	\(\nump\)

	integer(n_row)

	acoustic-wave winding number



	n_g

	\(\numg\)

	integer(n_row)

	gravity-wave winding number



	n_pg

	\(\numpg\)

	integer(n_row)

	radial order within the Eckart-Scuflaire-Osaki-Takata
scheme (see Takata, 2006b [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..893T/abstract])



	omega_int

	\(\omega_{\rm int}\)

	complex(n_row)

	dimensionless eigenfrequency; evaluated as \(\omega_{\rm int} = \sqrt{\zeta/E}\)



	zeta

	\(\zeta\)

	complex(n_row)

	integral of \(\sderiv{\zeta}{x}\) with respect to \(x\)








Perturbations









	Item

	Symbol

	Datatype

	Description





	x_ref

	\(x_{\rm ref}\)

	real

	fractional radius of reference location



	xi_r_ref

	\(\txi_{r,{\rm ref}}\)

	complex(n_row)

	radial displacement perturbation at reference location [\(R\)]



	eul_Phi_ref

	\(\tPhi'_{\rm ref}\)

	complex(n_row)

	Eulerian potential perturbation at reference location [\(GM/R\)]



	deul_Phi_ref

	\((\sderiv{\tPhi'}{x})_{\rm ref}\)

	complex(n_row)

	Eulerian potential gradient perturbation at reference location [\(GM/R^{2}\)]



	lag_S_ref

	\(\delta\tS_{\rm ref}\)

	complex(n_row)

	Lagrangian specific entropy perturbation at reference location [\(R\)]



	lag_L_ref

	\(\delta\tL_{\rm R,ref}\)

	complex(n_row)

	Lagrangian radiative luminosity perturbation at reference location [\(L\)]








Energetics & Transport









	Item

	Symbol

	Datatype

	Description





	eta[1]

	\(\eta\)

	real(n_row)

	normalized growth rate \(\eta\); evaluated using expression
in text of page 1186 of Stellingwerf (1978) [https://ui.adsabs.harvard.edu/abs/1978AJ.....83.1184S/abstract]



	E

	\(E\)

	real(n_row)

	mode inertia [\(M R^{2}\)]; evaluated by integrating
\(\sderiv{E}{x}\)



	E_p

	\(E_{\rm p}\)

	real(n_row)

	acoustic mode inertia [\(M R^{2}\)]; evaluated by
integrating \(\sderiv{E}{x}\) where
\(\varpi=1\)



	E_g

	\(E_{\rm g}\)

	real(n_row)

	gravity mode inertia [\(M R^{2}\)]; evaluated by
integrating \(\sderiv{E}{x}\) in regions where
\(\varpi=-1\)



	E_norm

	\(E_{\rm norm}\)

	real(n_row)

	normalized inertia; evaluation controlled by inertia_norm
parameter



	E_ratio

	—

	real(n_row)

	ratio of mode inertia outside reference location, to total inertia



	H

	\(H\)

	real(n_row)

	mode energy [\(G M^{2}/R\)]; evaluated as
\(\frac{1}{2} \omega^{2} E\)



	W[1]

	\(W\)

	real(n_row)

	mode work [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{W}{x}\)



	W_eps[1]

	\(W_{\epsilon}\)

	real(n_row)

	mode work [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{W_{\epsilon}}{x}\)



	tau_ss

	\(\tau_{\rm ss}\)

	real(n_row)

	steady-state torque [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{\tau_{\rm ss}}{x}\)



	tau_tr

	\(\tau_{\rm tr}\)

	real(n_row)

	steady-state torque [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{\tau_{\rm tr}}{x}\)








Rotation









	Item

	Symbol

	Datatype

	Description





	Omega_rot_ref

	\(\Omega_{\rm rot,ref}\)

	real(n_row)

	rotation angular frequency at reference location[\(\sqrt{GM/R^{3}}\)]



	domega_rot

	\(\Delta \omega\)

	real(n_row)

	dimensionless first-order rotational splitting; evaluated using eqn. 3.355 of Aerts et al. (2010) [https://ui.adsabs.harvard.edu/abs/2010aste.book.....A/abstract]



	dfreq_rot

	—

	real(n_row)

	dimensioned first-order rotational splitting; units and reference frame controlled by
freq_units and freq_frame parameters



	beta

	\(\beta\)

	real(n_row)

	rotation splitting coefficient; evaluated by
integrating \(\sderiv{\beta}{x}\)








Stellar Structure









	Item

	Symbol

	Datatype

	Description





	M_star[2]

	\(M\)

	real(n_row)

	stellar mass [\(\gram\)]



	R_star[2]

	\(R\)

	real(n_row)

	stellar radius [\(\cm\)]



	L_star[2]

	\(L\)

	real(n_row)

	stellar luminosity [\(\erg\,\second^{-1}\)]



	Delta_p

	\(\Delta \nu\)

	real(n_row)

	asymptotic p-mode large frequency separation [\(\sqrt{GM/R^{3}}\)]



	Delta_g

	\((\Delta P)^{-1}\)

	real(n_row)

	asymptotic g-mode inverse period separation [\(\sqrt{GM/R^{3}}\)]








Tidal Response

Note that these items are available only when using gyre_tides.









	Item

	Symbol

	Datatype

	Description





	k

	\(k\)

	integer(n_row)

	Fourier harmonic



	eul_Psi_ref

	\(\tPsi'_{\rm ref}\)

	complex(n_row)

	Eulerian total potential perturbation at reference location [\(GM/R\)]



	Phi_T_ref

	\(\tPhi_{\rm T, ref}\)

	real(n_row)

	tidal potential at reference location [\(GM/R\)]



	Omega_orb

	\(\Oorb\)

	real(n_row)

	orbital angular frequency; units and reference frame controlled by
freq_units and freq_frame parameters



	q

	\(q\)

	real(n_row)

	ratio of secondary mass to primary mass



	e

	\(e\)

	real(n_row)

	orbital eccentricity



	R_a

	\(R/a\)

	real(n_row)

	ratio of primary radius to orbital semi-major axis



	cbar

	\(\cbar_{\ell,m,k}\)

	real(n_row)

	tidal expansion coefficient; see eqn. A1 of Sun et al. (2023) [https://ui.adsabs.harvard.edu/abs/2023ApJ...945...43S/abstract]



	Gbar_1

	\(\Gbar^{(1)}_{\ell,m,k}\)

	real(n_row)

	secular orbital evolution coefficient; equivalent to \(G^{(1)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])



	Gbar_2

	\(\Gbar^{(2)}_{\ell,m,k}\)

	real(n_row)

	secular orbital evolution coefficient; equivalent to \(G^{(2)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])



	Gbar_3

	\(\Gbar^{(3)}_{\ell,m,k}\)

	real(n_row)

	secular orbital evolution coefficient; equivalent to \(G^{(3)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])



	Gbar_4

	\(\Gbar^{(4)}_{\ell,m,k}\)

	real(n_row)

	secular orbital evolution coefficient; equivalent to \(G^{(4)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])






Footnotes



[1]
(1,2,3)
This item is available only for stellar models with N capability



[2]
(1,2,3)
This item is available only for stellar models with D capability







            

          

      

      

    

  

    
      
          
            
  
Detail Files

Detail files store spatial quantities, such as eigenfunctions and
differential inertias, for an individual solution (mode, tidal
response, etc.) found during a run. The specific data written to
detail files are controlled by the detail_item_list
parameters of the &ad_output and &nad_output namelist
groups (gyre adiabatic and non-adiabatic calculations,
respectively) and the &tides_output namelist group
(gyre_tides calculations). These parameters specify the
items to be written, via a comma-separated list.

The following subsections describe the items that may appear in
detail_item_list, grouped together by functional area. For
each item, the corresponding math symbol is given (if there is one),
together with the datatype, and a brief description. Units (where
applicable) are indicated in brackets [].


Solution Data









	Item

	Symbol

	Datatype

	Description





	n

	\(N\)

	integer

	number of spatial grid points



	omega

	\(\omega\)

	complex

	dimensionless eigenfrequency (gyre) or forcing frequency (gyre_tides)



	x

	\(x\)

	real(n)

	independent variable \(x = r/R\)



	dx_min

	\(\Delta x_{\rm min}\)

	real

	minimum spacing of spatial grid



	dx_max

	\(\Delta x_{\rm max}\)

	real

	maximum spacing of spatial grid



	dx_rms

	\(\Delta x_{\rm rms}\)

	real

	root-mean-square spacing of spatial grid



	x_ref

	\(x_{\rm ref}\)

	real

	fractional radius of reference location



	y_1

	\(y_{1}\)

	complex(n)

	dependent variable



	y_2

	\(y_{2}\)

	complex(n)

	dependent variable



	y_3

	\(y_{3}\)

	complex(n)

	dependent variable



	y_4

	\(y_{4}\)

	complex(n)

	dependent variable



	y_5

	\(y_{5}\)

	complex(n)

	dependent variable



	y_6

	\(y_{6}\)

	complex(n)

	dependent variable






The definitions of the dependent variables
\(\{y_{1},\ldots,y_{6}\}\) are provided in the Oscillation Equations
chapter.



Observables









	Item

	Symbol

	Datatype

	Description





	freq

	—

	complex

	dimensioned frequency; units and reference frame controlled by
freq_units and freq_frame parameters



	freq_units

	—

	string

	freq_units parameter



	freq_frame

	—

	string

	freq_frame parameter



	f_T

	\(f_{T}\)

	real

	Effective temperature perturbation amplitude; evaluated using
eqn. 5 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]



	f_g

	\(f_{\rm g}\)

	real

	Effective gravity perturbation amplitude; evaluated using
eqn. 6 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]



	psi_T

	\(\psi_{T}\)

	real

	Effective temperature perturbation phase; evaluated using
eqn. 5 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]



	f_g

	\(\psi_{\rm g}\)

	real

	Effective gravity perturbation phase; evaluated using
eqn. 6 of Dupret et al. (2003) [https://ui.adsabs.harvard.edu/abs/2003A&A...398..677D/abstract]








Classification & Validation









	Item

	Symbol

	Datatype

	Description





	id

	—

	integer

	unique mode index



	l

	\(\ell\)

	integer

	harmonic degree



	l_i

	\(\ell_{\rm i}\)

	complex

	effective harmonic degree at inner boundary



	m

	\(m\)

	integer

	azimuthal order



	n_p

	\(\nump\)

	integer

	acoustic-wave winding number



	n_g

	\(\numg\)

	integer

	gravity-wave winding number



	n_pg

	\(\numpg\)

	integer

	radial order within the Eckart-Scuflaire-Osaki-Takata
scheme (see Takata, 2006b [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..893T/abstract])



	omega_int

	\(\omega_{\rm int}\)

	complex

	dimensionless eigenfrequency; evaluated as \(\omega_{\rm int} = \sqrt{\zeta/E}\)



	dzeta_dx

	\(\sderiv{\zeta}{x}\)

	complex(n)

	dimensionless frequency weight function; controlled by zeta_scheme parameter



	zeta

	\(\zeta\)

	complex

	integral of \(\sderiv{\zeta}{x}\) with respect to \(x\)



	Yt_1

	\(\mathcal{Y}_{1}\)

	complex(n)

	primary eigenfunction for Takata classification; evaluated
using a rescaled eqn. 69 of Takata (2006b) [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..893T/abstract]



	Yt_2

	\(\mathcal{Y}_{2}\)

	complex(n)

	secondary eigenfunction for Takata classification; evaluated
using a rescaled eqn. 70 of Takata (2006b) [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..893T/abstract]



	I_0

	\(I_{0}\)

	complex(n)

	first integral for radial modes; evaluated using
eqn. 42 of Takata (2006a) [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..759T/abstract]



	I_1

	\(I_{1}\)

	complex(n)

	first integral for dipole modes; evaluated using
eqn. 43 of Takata (2006a) [https://ui.adsabs.harvard.edu/abs/2006PASJ...58..759T/abstract]



	prop_type

	\(\varpi\)

	integer(n)

	propagation type; \(\varpi = 1\) in acoustic-wave regions,
\(\varpi=-1\) in gravity-wave regions, and \(\varpi=0\) in
evanescent regions








Perturbations









	Item

	Symbol

	Datatype

	Description





	xi_r_ref

	\(\txi_{r,{\rm ref}}\)

	complex

	radial displacement perturbation at reference location [\(R\)]



	xi_h_ref

	\(\txi_{\rm h,ref}\)

	complex

	radial displacement perturbation at reference location [\(R\)]



	eul_Phi_ref

	\(\tPhi'_{\rm ref}\)

	complex

	Eulerian potential perturbation at reference location [\(GM/R\)]



	deul_Phi_ref

	\((\sderiv{\tPhi'}{x})_{\rm ref}\)

	complex

	Eulerian potential gradient perturbation at reference location [\(GM/R^{2}\)]



	lag_S_ref

	\(\delta\tS_{\rm ref}\)

	complex

	Lagrangian specific entropy perturbation at reference location [\(R\)]



	lag_L_ref

	\(\delta\tL_{\rm R,ref}\)

	complex

	Lagrangian radiative luminosity perturbation at reference location [\(L\)]



	xi_r

	\(\txir\)

	complex(n)

	radial displacement perturbation [\(R\)]



	xi_h

	\(\txih\)

	complex(n)

	radial displacement perturbation [\(R\)]



	eul_Phi

	\(\tPhi'\)

	complex(n)

	Eulerian potential perturbation [\(GM/R\)]



	deul_Phi

	\(\sderiv{\tPhi'}{x}\)

	complex(n)

	Eulerian potential gradient perturbation [\(GM/R^{2}\)]



	lag_S

	\(\delta\tS\)

	complex(n)

	Lagrangian specific entropy perturbation [\(\cP\)]



	lag_L

	\(\delta\tLrad\)

	complex(n)

	Lagrangian radiative luminosity perturbation [\(L\)]



	eul_P

	\(\tP'\)

	complex(n)

	Eulerian total pressure perturbation [\(P\)]



	eul_rho

	\(\trho'\)

	complex(n)

	Eulerian density perturbation [\(\rho\)]



	eul_T

	\(\tT'\)

	complex(n)

	Eulerian temperature perturbation [\(T\)]



	lag_P

	\(\delta\tP\)

	complex(n)

	Lagrangian total pressure perturbation [\(P\)]



	lag_rho

	\(\delta\trho\)

	complex(n)

	Lagrangian density perturbation [\(\rho\)]



	lag_T

	\(\delta\tT\)

	complex(n)

	Lagrangian temperature perturbation [\(T\)]








Energetics & Transport









	Item

	Symbol

	Datatype

	Description





	eta

	\(\eta\)

	real

	normalized growth rate \(\eta\); evaluated using expression
in text of page 1186 of Stellingwerf (1978) [https://ui.adsabs.harvard.edu/abs/1978AJ.....83.1184S/abstract]



	E

	\(E\)

	real

	mode inertia [\(M R^{2}\)]; evaluated by integrating
\(\sderiv{E}{x}\)



	E_p

	\(E_{\rm p}\)

	real

	acoustic mode inertia [\(M R^{2}\)]; evaluated by
integrating \(\sderiv{E}{x}\) where
\(\varpi=1\)



	E_g

	\(E_{\rm g}\)

	real

	gravity mode inertia [\(M R^{2}\)]; evaluated by
integrating \(\sderiv{E}{x}\) in regions where
\(\varpi=-1\)



	E_norm

	\(E_{\rm norm}\)

	real

	normalized inertia; evaluation controlled by inertia_norm
parameter



	E_ratio

	
	real

	ratio of mode inertia outside reference location, to total inertia



	H

	\(H\)

	real

	mode energy [\(G M^{2}/R\)]; evaluated as
\(\frac{1}{2} \omega^{2} E\)



	W

	\(W\)

	real

	mode work [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{W}{x}\)



	W_eps

	\(W_{\epsilon}\)

	real

	mode work [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{W_{\epsilon}}{x}\)



	tau_ss

	\(\tau_{\rm ss}\)

	real

	steady-state torque [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{\tau_{\rm ss}}{x}\)



	tau_tr

	\(\tau_{\rm tr}\)

	real

	steady-state torque [\(G M^{2}/R\)]; evaluated by
integrating \(\sderiv{\tau_{\rm tr}}{x}\)



	dE_dx

	\(\sderiv{E}{x}\)

	real(n)

	differential inertia [\(M R^{2}\)]; evaluated using eqn. 3.139 of
Aerts et al. (2010) [https://ui.adsabs.harvard.edu/abs/2010aste.book.....A/abstract]



	dW_dx[1]

	\(\sderiv{W}{x}\)

	real(n)

	differential work [\(GM^{2}/R\)]; evaluated using eqn. 25.9
of Unno et al. (1989) [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract]



	dW_eps_dx[1]

	\(\sderiv{W_{\epsilon}}{x}\)

	real(n)

	differential nuclear work [\(GM^{2}/R\)]; evaluated using
eqn. 25.9 of Unno et al. (1989) [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract]



	dtau_ss_dx

	\(\sderiv{\tau_{\rm ss}}{x}\)

	real(n)

	steady-state differential torque [G M^{2}/R]



	dtau_tr_dx

	\(\sderiv{\tau_{\rm tr}}{x}\)

	real(n)

	transient differential torque [G M^{2}/R]



	alpha_0

	\(\alpha_{0}\)

	real(n)

	excitation coefficient; evaluated using eqn. 26.10 of
Unno et al. (1989) [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract]



	alpha_1

	\(\alpha_{1}\)

	real(n)

	excitation coefficient; evaluated using eqn. 26.12 of
Unno et al. (1989) [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract]








Rotation









	Item

	Symbol

	Datatype

	Description





	Omega_rot_ref

	\(\Omega_{\rm rot,ref}\)

	real

	rotation angular frequency at reference location[\(\sqrt{GM/R^{3}}\)]



	Omega_rot

	\(\Orot\)

	real(n)

	rotation angular frequency [\(\sqrt{GM/R^{3}}\)]



	domega_rot

	\(\Delta \omega\)

	real

	dimensionless first-order rotational splitting; evaluated using eqn. 3.355 of Aerts et al. (2010) [https://ui.adsabs.harvard.edu/abs/2010aste.book.....A/abstract]



	dfreq_rot

	—

	real

	dimensioned first-order rotational splitting; units and reference frame controlled by
freq_units and freq_frame parameters



	beta

	\(\beta\)

	real

	rotation splitting coefficient; evaluated by
integrating \(\sderiv{\beta}{x}\)



	dbeta_dx

	\(\sderiv{\beta}{x}\)

	complex(n)

	unnormalized rotation splitting kernel; evaluated using
eqn. 3.357 of Aerts et al. (2010) [https://ui.adsabs.harvard.edu/abs/2010aste.book.....A/abstract]



	lambda

	\(\lambda\)

	complex(n)

	tidal equation eigenvalue








Stellar Structure









	Item

	Symbol

	Datatype

	Description





	M_star[2]

	\(M\)

	real

	stellar mass [\(\gram\)]



	R_star[2]

	\(R\)

	real

	stellar radius [\(\cm\)]



	L_star[2]

	\(L\)

	real

	stellar luminosity [\(\erg\,\second^{-1}\)]



	Delta_p

	\(\Delta \nu\)

	real

	asymptotic p-mode large frequency separation [\(\sqrt{GM/R^{3}}\)]



	Delta_g

	\((\Delta P)^{-1}\)

	real

	asymptotic g-mode inverse period separation [\(\sqrt{GM/R^{3}}\)]



	V_2

	\(V_2\)

	real(n)

	structure coefficient; defined in Structure Coefficients section



	As

	\(A^{*}\)

	real(n)

	structure coefficient; defined in Structure Coefficients section



	U

	\(U\)

	real(n)

	structure coefficient; defined in Structure Coefficients section



	c_1

	\(c_{1}\)

	real(n)

	structure coefficient; defined in Structure Coefficients section



	Gamma_1

	\(\Gammi\)

	real(n)

	adiabatic exponent; defined in Linearized Equations section



	nabla[1]

	\(\nabla\)

	real(n)

	temperature gradient; defined in Structure Coefficients section
Dimensionless Formulation section



	nabla_ad[1]

	\(\nabad\)

	real(n)

	adiabatic temperature gradient; defined in
Linearized Equations section



	dnabla_ad[1]

	\(\dnabad\)

	real(n)

	derivative of adiabatic temperature gradient



	upsilon_T[1]

	\(\upsT\)

	real(n)

	thermodynamic coefficient; defined in Linearized Equations
section



	c_lum[1]

	\(\clum\)

	real(n)

	structure coefficient; defined in Structure Coefficients
section



	c_rad[1]

	\(\crad\)

	real(n)

	structure coefficient; defined in Structure Coefficients
section



	c_thn[1]

	\(\cthn\)

	real(n)

	structure coefficient; defined in Structure Coefficients
section



	c_thk[1]

	\(\cthk\)

	real(n)

	structure coefficient; defined in Structure Coefficients
section



	c_eps[1]

	\(\ceps\)

	real(n)

	structure coefficient; defined in Structure Coefficients
section



	kap_rho[1]

	\(\kaprho\)

	real(n)

	opacity partial; defined in Linearized Equations
section



	kap_T[1]

	\(\kapT\)

	real(n)

	opacity partial; defined in Linearized Equations
section



	eps_rho[1]

	\(\epsnucrho\)

	real(n)

	nuclear energy generation partial; defined in Linearized Equations
section



	eps_T[1]

	\(\epsnucT\)

	real(n)

	nuclear energy generation partial; defined in Linearized Equations
section



	M_r[2]

	\(M_r\)

	real(n)

	interior mass [\(\gram\)]



	P[2]

	\(P\)

	real(n)

	total pressure [\(\barye\)]



	rho[2]

	\(\rho\)

	real(n)

	density [\(\gram\,\cm^{-3}\)]



	T[2]

	\(T\)

	real(n)

	temperature [\(\kelvin\)]








Tidal Response

Note that these items are available only when using gyre_tides.









	Item

	Symbol

	Datatype

	Description





	k

	\(k\)

	integer

	Fourier harmonic



	eul_Psi_ref

	\(\tPsi'_{\rm ref}\)

	complex

	Eulerian total potential perturbation at reference location [\(GM/R\)]



	Phi_T_ref

	\(\tPhi_{\rm T, ref}\)

	real

	tidal potential at reference location [\(GM/R\)]



	eul_Psi

	\(\tPsi'\)

	complex(n)

	Eulerian total potential perturbation [\(GM/R\)]



	Phi_T

	\(\tPhi_{{\rm T}}\)

	real(n)

	tidal potential [\(GM/R\)]



	Omega_orb

	\(\Oorb\)

	real

	orbital angular frequency; units and reference frame controlled by
freq_units and freq_frame parameters



	q

	\(q\)

	real

	ratio of secondary mass to primary mass



	e

	\(e\)

	real

	orbital eccentricity



	R_a

	\(R/a\)

	real

	ratio of primary radius to orbital semi-major axis



	cbar

	\(\cbar_{\ell,m,k}\)

	real

	tidal expansion coefficient; see eqn. A1 of Sun et al. (2023) [https://ui.adsabs.harvard.edu/abs/2023ApJ...945...43S/abstract]



	Gbar_1

	\(\Gbar^{(1)}_{\ell,m,k}\)

	real

	secular orbital evolution coefficient; equivalent to \(G^{(1)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])



	Gbar_2

	\(\Gbar^{(2)}_{\ell,m,k}\)

	real

	secular orbital evolution coefficient; equivalent to \(G^{(2)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])



	Gbar_3

	\(\Gbar^{(3)}_{\ell,m,k}\)

	real

	secular orbital evolution coefficient; equivalent to \(G^{(3)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])



	Gbar_4

	\(\Gbar^{(4)}_{\ell,m,k}\)

	real

	secular orbital evolution coefficient; equivalent to \(G^{(4)}_{\ell,m,-k}\) (see Willems et al., 2003 [https://ui.adsabs.harvard.edu/abs/2003A&A...397..973W/abstract])






Footnotes



[1]
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
This option is available only for stellar models with N capability



[2]
(1,2,3,4,5,6,7)
This option is available only for stellar models with D capability







            

          

      

      

    

  

    
      
          
            
  
File Formats

The format of summary and detail files depends on the value of the
summary_file_format and detail_file_format parameters
in the &ad_output and &nad_output namelist groups (see
the Output Parameters section). Possible choices are:


	'HDF' : A binary format based on the HDF5 [https://support.hdfgroup.org/HDF5/whatishdf5.html] format


	'TXT' : A text format modeled after
MESA’s profile file format [http://mesa.sourceforge.net/output.html]




For both formats, the data stored in the files come in two flavors —
scalars (a single value) and arrays (a sequence of values). Files in
either format can be read in Python using the
pygyre.read_output() [https://pygyre.readthedocs.io/en/latest/api-ref.html#pygyre.read_output] function from PyGYRE [https://github.com/rhdtownsend/pygyre] (see the Interpreting Output Files chapter for
examples).


HDF Format

HDF-format output files adhere to the following conventions:


	All data objects are attached to the root HDF5 group (/)


	Attributes are used to store scalar data


	Datasets are used to store array data


	Real values are written with type H5T_IEEE_F64LE when GYRE is
compiled in double precision (the default), and type
H5T_IEEE_F32LE otherwise


	Integer values are written with type H5T_STD_I32LE


	Complex values are written as a compound type, composed of a real
component re and an imaginary component im; the types of
these components are the same as for real values






TXT Format

TXT-format files adhere to the following conventions:


	The first three lines contain the scalar data:


	The first line contains the column numbers for the scalar data,
starting at 1


	The second line contains the column labels for the scalar data


	The third line contains the actual scalar data values






	The subsequent lines contain the array data:


	The fourth line contains the column numbers for the array data,
starting at 1


	The fifth line contains the the column labels for the array data


	The sixth and subsequent lines contain the actual array data (one
line per array element)






	Complex values are written as two columns, with the first column
containing the real component and the second the imaginary component








            

          

      

      

    

  

    
      
          
            
  
Output Filters

TBD




            

          

      

      

    

  

    
      
          
            
  
Stellar Models

This chapter documents the different types of stellar models that can
be used with GYRE frontends to specify the
equilibrium stellar configuration.



	Evolutionary Models
	Supported Formats

	Interpolation

	Double Points





	Polytropic Models

	Homogeneous Models

	Model Capabilities

	MESA File Format
	Version 0.01

	Version 0.19

	Version 1.00

	Version 1.01

	Version 1.20





	GSM File Format
	Version 0.00

	Version 1.00

	Version 1.10

	Version 1.20





	POLY File Format








            

          

      

      

    

  

    
      
          
            
  
Evolutionary Models

Setting the model_type parameter of the &model
namelist group to 'EVOL' tells the frontend to read the
equilibrium stellar model from a file created by a stellar evolution
code (e.g., MESA [http://mesa.sourceforge.net/]).


Supported Formats

The format of the model file is specified by the file_format
parameter of the &model namelist group (see the
Stellar Model Parameters section). Possible choices are summarized in the
table below.







	file_format

	Description





	'AMDL'

	Binary file describing an evolutionary model in AMDL format,
as reverse engineered from the ADIPLS stellar oscillation code
(Christensen-Dalsgaard, 2008) [https://ui.adsabs.harvard.edu/abs/2008Ap&SS.316..113C/abstract]



	'B3'

	HDF5 file describing an evolutionary model in B3 format. This
format is for testing purposes only, and will eventually be
superseded and/or removed



	'FAMDL'

	Text file describing an evolutionary model in FAMDL format, as
specified in the CoRoT/ESTA File Formats document



	'FGONG'

	Text file describing an evolutionary model in FGONG format, as
specified in the updated FGONG Format document



	'GSM'

	HDF5 file describing an evolutionary model in GYRE Stellar
Model (GSM) format, as specified in the GSM File Format
section



	'MESA'

	Text file describing an evolutionary model in MESA format, as
specified in the MESA File Format section



	'LOSC'

	Text file describing an evolutionary model in the revised LOSC
format



	'OSC'

	Text file describing an evolutionary model in OSC format, as
specified in the CoRoT/ESTA File Formats document)



	'WDEC'

	Text file describing an evolutionary model in WDEC format, as
specified in Bischoff-Kim & Montgomery (2018) [https://ui.adsabs.harvard.edu/abs/2018AJ....155..187B/abstract]








Interpolation

Cubic spline interpolation is used to evaluate data between model grid
points. The deriv_type parameter in the &model
namelist group controls how the spline derivatives are set up.



Double Points

If a model contains a pair of adjacent points with the same radial
coordinate \(r\), this pair is treated as a double point
representing a discontinuity in the density and some other
thermodynamic quantities (but not the pressure or temperature). GYRE
does not attempt to interpolate across double points, but instead
handles them properly when solving equations through the use of
internal boundary conditions.





            

          

      

      

    

  

    
      
          
            
  
Polytropic Models

Setting the model_type parameter of the &model
namelist group to 'POLY' tells the frontend to read the
equilibrium stellar model from a POLY file created by the
build_poly tool. See the Composite Polytropes and
Building POLY Models appendices for further details.




            

          

      

      

    

  

    
      
          
            
  
Homogeneous Models

Setting the model_type parameter of the &model
namelist group to 'HOM' tells the frontend to create a
homogeneous (uniform density) stellar model, equivalent to a
polytrope with index \(n=0\). Because the structure of these model
can be computed analytically, there is no need to read from an
external file.

The Gamma_1 parameter of the &model namelist group
controls the first adiabatic index of the model, while the n,
s and grid_type parameters control the model
grid. See the Stellar Model Parameters section for further details.




            

          

      

      

    

  

    
      
          
            
  
Model Capabilities

Which data items are included in a given stellar model dictates what
sorts of calculation can be performed on that model by the
frontends. To this end, the different model types and file formats can
be classified according to their capabilities (labeled using a
single letter):


	N
	The model supports non-adiabatic calculations.



	D
	The model supports dimensioned results.



	R
	The model supports differential rotational.





The table below summarizes the different capabilities of each
model-type and file-format combination.










	Model Type

	File Format

	N

	D

	R





	EVOL

	AMDL

	
	X

	


	EVOL

	B3

	X

	X

	


	EVOL

	FAMDL

	
	X

	


	EVOL

	FGONG

	
	X

	


	EVOL

	GSM

	X

	X

	X



	EVOL

	LOSC

	
	X

	


	EVOL

	MESA

	X

	X

	X



	EVOL

	OSC

	X

	X

	X



	EVOL

	WDEC

	
	X

	


	POLY

	POLY

	
	
	


	HOM

	—

	
	
	








            

          

      

      

    

  

    
      
          
            
  
MESA File Format

Files in MESA format store ASCII text data describing a MESA [http://mesa.sourceforge.net/] stellar model (note that MESA itself refers to these files
as ‘GYRE-format’ files). To create one of these files in MESA, set the
pulse_data_format parameter of the &controls namelist
group to the value 'GYRE'.

There are a number of versions of the MESA format, distinguished by
the initial header line:



	Version 0.01

	Version 0.19

	Version 1.00

	Version 1.01

	Version 1.20








            

          

      

      

    

  

    
      
          
            
  
Version 0.01

The first line of version-0.01 MESA-format files is a header with the following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(N\)

	integer

	number of grid points



	2

	\(M\)

	real

	stellar mass [\(\gram\)]



	3

	\(R\)

	real

	photospheric radius [\(\cm\)]



	4

	\(L\)

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]






The subsequent \(N\) lines contain the model data, one line per
grid point extending from the center to the surface, with the
following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(k\)

	integer

	grid point index (\(k=1,\ldots,N\))



	2

	\(r\)

	real

	radial coordinate [\(\cm\)]



	3

	\(\frac{M_{r}}{M-M_{r}}\)

	real

	transformed interior mass



	4

	\(L_{r}\)

	real

	interior luminosity [\(\erg\,\second^{-1}\)]



	5

	\(P\)

	real

	total pressure [\(\barye\)]



	6

	\(T\)

	real

	temperature [\(\kelvin\)]



	7

	\(\rho\)

	real

	density [\(\gram\,\cm^{-3}\)]



	8

	\(\nabla\)

	real

	temperature gradient



	9

	\(N^{2}\)

	real

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	10

	\(\cV\)

	real

	specific heat at constant volume [\(\erg\,\gram^{-1}\,\kelvin^{-1}\))



	11

	\(\cP\)

	real

	specific heat at constant pressure [\(\erg\,\gram^{-1}\,\kelvin^{-1}\))



	12

	\(\chi_{T}\)

	real

	equation-of-state partial \((\spderiv{\ln P}{\ln T})_{\rho}\)



	13

	\(\chi_{\rho}\)

	real

	equation-of-state partial \((\spderiv{\ln P}{\ln \rho})_{T}\)



	14

	\(\kappa\)

	real

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	15

	\(\kapT\)

	real

	opacity partial



	16

	\(\kaprho\)

	real

	opacity partial



	17

	\(\epsilon\)

	real

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	18

	\(\epsnuc\,\epsnucT\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	19

	\(\epsnuc\,\epsnucrho\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 0.19

The first line of version-0.19 MESA-format files is a header with the following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(N\)

	integer

	number of grid points



	2

	\(M\)

	real

	stellar mass [\(\gram\)]



	3

	\(R\)

	real

	photospheric radius [\(\cm\)]



	4

	\(L\)

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	5

	19

	integer

	version number






The subsequent \(N\) lines contain the model data, one line per
grid point extending from the center to the surface, with the
following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(k\)

	integer

	grid point index (\(k=1,\ldots,N\))



	2

	\(r\)

	real

	radial coordinate [\(\cm\)]



	3

	\(\frac{M_{r}}{M-M_{r}}\)

	real

	transformed interior mass



	4

	\(L_{r}\)

	real

	interior luminosity [\(\erg\,\second^{-1}\)]



	5

	\(P\)

	real

	total pressure [\(\barye\)]



	6

	\(T\)

	real

	temperature [\(\kelvin\)]



	7

	\(\rho\)

	real

	density [\(\gram\,\cm^{-3}\)]



	8

	\(\nabla\)

	real

	temperature gradient



	9

	\(N^{2}\)

	real

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	10

	\(\Gamma_{1}\)

	real

	adiabatic exponent



	11

	\(\nabla_{\rm ad}\)

	real

	adiabatic temperature gradient



	12

	\(\upsT\)

	real

	thermodynamic coefficient



	13

	\(\kappa\)

	real

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	14

	\(\kapT\)

	real

	opacity partial



	15

	\(\kaprho\)

	real

	opacity partial



	16

	\(\epsilon\)

	real

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	17

	\(\epsnuc\,\epsnucT\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	18

	\(\epsnuc\,\epsnucrho\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	19

	\(\Orot\)

	real

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 1.00

The first line of version-1.00 MESA-format files is a header with the following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(N\)

	integer

	number of grid points



	2

	\(M\)

	real

	stellar mass [\(\gram\)]



	3

	\(R\)

	real

	photospheric radius [\(\cm\)]



	4

	\(L\)

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	5

	100

	integer

	version number






The subsequent \(N\) lines contain the model data, one line per
grid point extending from the center to the surface, with the
following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(k\)

	integer

	grid point index (\(k=1,\ldots,N\))



	2

	\(r\)

	real

	radial coordinate [\(\cm\)]



	3

	\(M_{r}\)

	real

	interior mass [\(\gram\)]



	4

	\(L_{r}\)

	real

	interior luminosity [\(\erg\,\second^{-1}\)]



	5

	\(P\)

	real

	total pressure [\(\barye\)]



	6

	\(T\)

	real

	temperature [\(\kelvin\)]



	7

	\(\rho\)

	real

	density [\(\gram\,\cm^{-3}\)]



	8

	\(\nabla\)

	real

	dimensionless temperature gradient



	9

	\(N^{2}\)

	real

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	10

	\(\Gamma_{1}\)

	real

	adiabatic exponent



	11

	\(\nabla_{\rm ad}\)

	real

	adiabatic temperature gradient



	12

	\(\upsT\)

	real

	thermodynamic coefficient



	13

	\(\kappa\)

	real

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	14

	\(\kappa\,\kapT\)

	real

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	15

	\(\kappa\,\kaprho\)

	real

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	16

	\(\epsilon\)

	real

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	17

	\(\epsnuc\,\epsnucT\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	18

	\(\epsnuc\,\epsnucrho\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	19

	\(\Orot\)

	real

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 1.01

The first line of version-1.01 MESA-format files is a header with the following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(N\)

	integer

	number of grid points



	2

	\(M\)

	real

	stellar mass [\(\gram\)]



	3

	\(R\)

	real

	photospheric radius [\(\cm\)]



	4

	\(L\)

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	5

	101

	integer

	version number






The subsequent \(N\) lines contain the model data, one line per
grid point extending from the center to the surface, with the
following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(k\)

	integer

	grid point index (\(k=1,\ldots,N\))



	2

	\(r\)

	real

	radial coordinate [\(\cm\)]



	3

	\(M_{r}\)

	real

	interior mass [\(\gram\)]



	4

	\(L_{r}\)

	real

	interior luminosity [\(\erg\,\second^{-1}\)]



	5

	\(P\)

	real

	total pressure [\(\barye\)]



	6

	\(T\)

	real

	temperature [\(\kelvin\)]



	7

	\(\rho\)

	real

	density [\(\gram\,\cm^{-3}\)]



	8

	\(\nabla\)

	real

	dimensionless temperature gradient



	9

	\(N^{2}\)

	real

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	10

	\(\Gamma_{1}\)

	real

	adiabatic exponent



	11

	\(\nabla_{\rm ad}\)

	real

	adiabatic temperature gradient



	12

	\(\upsT\)

	real

	thermodynamic coefficient



	13

	\(\kappa\)

	real

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	14

	\(\kappa\,\kapT\)

	real

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	15

	\(\kappa\,\kaprho\)

	real

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	16

	\(\epsnuc\)

	real

	nuclear energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	17

	\(\epsnuc\,\epsnucT\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	18

	\(\epsnuc\,\epsnucrho\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	19

	\(\Orot\)

	real

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 1.20

The first line of version-1.20 MESA-format files is a header with the following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(N\)

	integer

	number of grid points



	2

	\(M\)

	real

	stellar mass [\(\gram\)]



	3

	\(R\)

	real

	photospheric radius [\(\cm\)]



	4

	\(L\)

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	5

	120

	integer

	version number






The subsequent \(N\) lines contain the model data, one line per
grid point extending from the center to the surface, with the
following columns:









	Column

	Symbol

	Datatype

	Definition





	1

	\(k\)

	integer

	grid point index (\(k=1,\ldots,N\))



	2

	\(r\)

	real

	radial coordinate [\(\cm\)]



	3

	\(M_{r}\)

	real

	interior mass [\(\gram\)]



	4

	\(L_{r}\)

	real

	interior luminosity [\(\erg\,\second^{-1}\)]



	5

	\(P\)

	real

	total pressure [\(\barye\)]



	6

	\(T\)

	real

	temperature [\(\kelvin\)]



	7

	\(\rho\)

	real

	density [\(\gram\,\cm^{-3}\)]



	8

	\(\nabla\)

	real

	dimensionless temperature gradient



	9

	\(N^{2}\)

	real

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	10

	\(\Gamma_{1}\)

	real

	adiabatic exponent



	11

	\(\nabla_{\rm ad}\)

	real

	adiabatic temperature gradient



	12

	\(\upsT\)

	real

	thermodynamic coefficient



	13

	\(\kappa\)

	real

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	14

	\(\kappa\,\kapT\)

	real

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	15

	\(\kappa\,\kaprho\)

	real

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	16

	\(\epsnuc\)

	real

	nuclear energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	17

	\(\epsnuc\,\epsnucT\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	18

	\(\epsnuc\,\epsnucrho\)

	real

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	19

	\(\epsgrav\)

	real

	gravothermal energy release rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	20

	\(\Orot\)

	real

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
GSM File Format

Files in GSM (GYRE Stellar Model) format store HDF5 data describing a
stellar model. This format is intended as a portable,
storage-efficient alternative to the MESA File Format. To
create one of these files in MESA (from revision 21.12.1 onward), set
the pulse_data_format parameter of the &controls
namelist group to the value 'GSM'.

The GSM format adheres to the following conventions:


	All data objects are attached to the root HDF5 group (/)


	Real values are written with type H5T_IEEE_F64LE when GYRE is
compiled in double precision (the default), and type
H5T_IEEE_F32LE otherwise


	Integer values are written with type H5T_STD_I32LE




There are a number of versions of the GSM format, distinguished by the
version attribute in the root HDF5 group:



	Version 0.00

	Version 1.00

	Version 1.10

	Version 1.20








            

          

      

      

    

  

    
      
          
            
  
Version 0.00

Data items in the root HDF5 group of version-0.00 GSM-format files are as follows:










	Item

	Symbol

	Object type

	Data type

	Definition





	n

	\(N\)

	attribute

	integer

	number of grid points



	M_star

	\(M\)

	attribute

	real

	stellar mass [\(\gram\)]



	R_star

	\(R\)

	attribute

	real

	photospheric radius [\(\cm\)]



	L_star

	\(L\)

	attribute

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	r

	\(r\)

	dataset

	real (n)

	radial coordinate [\(\cm\)]



	w

	\(\frac{M_{r}}{M-M_{r}}\)

	dataset

	real (n)

	transformed interior mass



	L_r

	\(L_{r}\)

	dataset

	real (n)

	interior luminosity [\(\erg\,\second^{-1}\)]



	p

	\(P\)

	dataset

	real (n)

	total pressure [\(\barye\)]



	rho

	\(\rho\)

	dataset

	real (n)

	density [\(\gram\,\cm^{-3}\)]



	T

	\(T\)

	dataset

	real (n)

	temperature [\(\kelvin\)]



	N2

	\(N^{2}\)

	dataset

	real (n)

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	Gamma_1

	\(\Gamma_{1}\)

	dataset

	real (n)

	adiabatic exponent



	nabla_ad

	\(\nabla_{\rm ad}\)

	dataset

	real (n)

	adiabatic temperature gradient



	delta

	\(\upsT\)

	dataset

	real (n)

	thermodynamic coefficient



	nabla

	\(\nabla\)

	dataset

	real (n)

	temperature gradient



	kappa

	\(\kappa\)

	dataset

	real (n)

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	kappa_T

	\(\kapT\)

	dataset

	real (n)

	opacity partial



	kappa_rho

	\(\kaprho\)

	dataset

	real (n)

	opacity partial



	epsilon

	\(\epsilon\)

	dataset

	real (n)

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	epsilon_T

	\(\epsnuc\,\epsnucT\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	epsilon_rho

	\(\epsnuc\,\epsnucrho\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	Omega_rot

	\(\Orot\)

	dataset

	real (n)

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 1.00

Data items in the root HDF5 group of version-1.00 GSM-format files are as follows:










	Item

	Symbol

	Object type

	Data type

	Definition





	n

	\(N\)

	attribute

	integer

	number of grid points



	version

	—

	attribute

	integer

	100



	M_star

	\(M\)

	attribute

	real

	stellar mass [\(\gram\)]



	R_star

	\(R\)

	attribute

	real

	photospheric radius [\(\cm\)]



	L_star

	\(L\)

	attribute

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	r

	\(r\)

	dataset

	real (n)

	radial coordinate [\(\cm\)]



	M_r

	\(M_r\)

	dataset

	real (n)

	interior mass [\(\gram\)]



	L_r

	\(L_{r}\)

	dataset

	real (n)

	interior luminosity [\(\erg\,\second^{-1}\)]



	P

	\(P\)

	dataset

	real (n)

	total pressure [\(\barye\)]



	rho

	\(\rho\)

	dataset

	real (n)

	density [\(\gram\,\cm^{-3}\)]



	T

	\(T\)

	dataset

	real (n)

	temperature [\(\kelvin\)]



	N2

	\(N^{2}\)

	dataset

	real (n)

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	Gamma_1

	\(\Gamma_{1}\)

	dataset

	real (n)

	adiabatic exponent



	nabla_ad

	\(\nabla_{\rm ad}\)

	dataset

	real (n)

	adiabatic temperature gradient



	delta

	\(\upsT\)

	dataset

	real (n)

	thermodynamic coefficient



	nabla

	\(\nabla\)

	dataset

	real (n)

	temperature gradient



	kap

	\(\kappa\)

	dataset

	real (n)

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	kap_T

	\(\kappa\,\kapT\)

	dataset

	real (n)

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	kap_rho

	\(\kappa\,\kaprho\)

	dataset

	real (n)

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	eps

	\(\epsilon\)

	dataset

	real (n)

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_T

	\(\epsnuc\,\epsnucT\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_rho

	\(\epsnuc\,\epsnucrho\)

	dataset

	real (n)

	nuclear energy generation rate partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	Omega_rot

	\(\Orot\)

	dataset

	real (n)

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 1.10

Data items in the root HDF5 group of version-1.10 GSM-format files are as follows:










	Item

	Symbol

	Object type

	Data type

	Definition





	n

	\(n\)

	attribute

	integer

	number of grid points



	version

	—

	attribute

	integer

	110



	M_star

	\(M\)

	attribute

	real

	stellar mass [\(\gram\)]



	R_star

	\(R\)

	attribute

	real

	photospheric radius [\(\cm\)]



	L_star

	\(L\)

	attribute

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	r

	\(r\)

	dataset

	real (n)

	radial coordinate [\(\cm\)]



	M_r

	\(M_r\)

	dataset

	real (n)

	interior mass [\(\gram\)]



	L_r

	\(L_{r}\)

	dataset

	real (n)

	interior luminosity [\(\erg\,\second^{-1}\)]



	P

	\(P\)

	dataset

	real (n)

	total pressure [\(\barye\)]



	rho

	\(\rho\)

	dataset

	real (n)

	density [\(\gram\,\cm^{-3}\)]



	T

	\(T\)

	dataset

	real (n)

	temperature [\(\kelvin\)]



	N2

	\(N^{2}\)

	dataset

	real (n)

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	Gamma_1

	\(\Gamma_{1}\)

	dataset

	real (n)

	adiabatic exponent



	nabla_ad

	\(\nabla_{\rm ad}\)

	dataset

	real (n)

	adiabatic temperature gradient



	delta

	\(\upsT\)

	dataset

	real (n)

	thermodynamic coefficient



	nabla

	\(\nabla\)

	dataset

	real (n)

	dimensionless temperature gradient



	kap

	\(\kappa\)

	dataset

	real (n)

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	kap_kap_T

	\(\kappa\,\kapT\)

	dataset

	real (n)

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	kap_kap_rho

	\(\kappa\,\kaprho\)

	dataset

	real (n)

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	eps

	\(\epsilon\)

	dataset

	real (n)

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_eps_T

	\(\epsnuc\,\epsnucT\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_eps_rho

	\(\epsnuc\,\epsnucrho\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	Omega_rot

	\(\Orot\)

	dataset

	real (n)

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
Version 1.20

Data items in the root HDF5 group of version-1.20 GSM-format files are as follows:










	Item

	Symbol

	Object type

	Data type

	Definition





	n

	\(n\)

	attribute

	integer

	number of grid points



	version

	—

	attribute

	integer

	120



	M_star

	\(M\)

	attribute

	real

	stellar mass [\(\gram\)]



	R_star

	\(R\)

	attribute

	real

	photospheric radius [\(\cm\)]



	L_star

	\(L\)

	attribute

	real

	photospheric luminosity [\(\erg\,\second^{-1}\)]



	r

	\(r\)

	dataset

	real (n)

	radial coordinate [\(\cm\)]



	M_r

	\(M_r\)

	dataset

	real (n)

	interior mass [\(\gram\)]



	L_r

	\(L_{r}\)

	dataset

	real (n)

	interior luminosity [\(\erg\,\second^{-1}\)]



	P

	\(P\)

	dataset

	real (n)

	total pressure [\(\barye\)]



	rho

	\(\rho\)

	dataset

	real (n)

	density [\(\gram\,\cm^{-3}\)]



	T

	\(T\)

	dataset

	real (n)

	temperature [\(\kelvin\)]



	N2

	\(N^{2}\)

	dataset

	real (n)

	Brunt-Väisälä frequency squared [\(\second^{-2}\)]



	Gamma_1

	\(\Gamma_{1}\)

	dataset

	real (n)

	adiabatic exponent



	nabla_ad

	\(\nabla_{\rm ad}\)

	dataset

	real (n)

	adiabatic temperature gradient



	delta

	\(\upsT\)

	dataset

	real (n)

	thermodynamic coefficient



	nabla

	\(\nabla\)

	dataset

	real (n)

	dimensionless temperature gradient



	kap

	\(\kappa\)

	dataset

	real (n)

	opacity [\(\cm^{2}\,\gram^{-1}\)]



	kap_kap_T

	\(\kappa\,\kapT\)

	dataset

	real (n)

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	kap_kap_rho

	\(\kappa\,\kaprho\)

	dataset

	real (n)

	opacity partial [\(\cm^{2}\,\gram^{-1}\)]



	eps

	\(\epsilon\)

	dataset

	real (n)

	total energy generation rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_eps_T

	\(\epsnuc\,\epsnucT\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_eps_rho

	\(\epsnuc\,\epsnucrho\)

	dataset

	real (n)

	nuclear energy generation partial [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	eps_grav

	\(\epsgrav\)

	dataset

	real (n)

	gravothermal energy release rate [\(\erg\,\second^{-1}\,\gram^{-1}\)]



	Omega_rot

	\(\Orot\)

	dataset

	real (n)

	rotation angular frequency [\(\radian\,\second^{-1}\)]









            

          

      

      

    

  

    
      
          
            
  
POLY File Format

Files in POLY format store HDF5 data describing a composite polytrope
model. This format adheres to the following conventions:


	All data objects are attached to the root HDF5 group (/)


	Real values are written with type H5T_IEEE_F64LE when GYRE is
compiled in double precision (the default), and type
H5T_IEEE_F32LE otherwise


	Integer values are written with type H5T_STD_I32LE




Data items in the root HDF5 group are as follows:










	Data Item

	Variable

	Object type

	Data type

	Definition





	n

	\(N\)

	attribute

	integer

	number of grid points



	n_r

	\(\nreg\)

	attribute

	integer

	number of regions



	n_poly

	\(n_{i}\)

	attribute

	real (n_r)

	polytropic indices of regions



	z_b

	\(z_{i-1/2}\)

	attribute

	real (n_r-1)

	radial coordinates of region boundaries



	Delta_b

	\(\Delta_{i-1/2}\)

	attribute

	real (n_r-1)

	log density jump of region boundaries



	Gamma_1

	\(\Gamma_{1}\)

	attribute

	real

	first adiabatic exponent



	z

	\(z\)

	dataset

	real (n)

	polytropic radial coordinate



	theta

	\(\theta\)

	dataset

	real (n)

	Lane-Emden variable



	dtheta

	\(\theta'\)

	dataset

	real (n)

	Derivative of Lane-Emden variable









            

          

      

      

    

  

    
      
          
            
  
Oscillation Equations

This chapter outlines how the oscillation equations solved by the GYRE
frontends are obtained from the basic equations of stellar structure.



	Fluid Equations

	Equilibrium State

	Linearized Equations

	Separated Equations

	Boundary Conditions
	Inner Boundary

	Outer Boundary

	Internal Boundaries





	Dimensionless Formulation
	Variables

	Oscillation Equations

	Boundary Conditions
	Inner Boundary

	Outer Boundary
	Internal Boundaries









	Structure Coefficients

	Physics Switches





	Rotation Effects
	Doppler Shift

	Perturbative Coriolis Force Treatment

	Non-Perturbative Coriolis Force Treatment
	Solution Families

	Implementing the TAR









	Convection Effects
	Frozen Convection

	Turbulent Damping





	Tidal Effects
	Tidal Potential

	Separated Equations

	Boundary Conditions












            

          

      

      

    

  

    
      
          
            
  
Fluid Equations

The starting point is the fluid equations, comprising the conservation
laws for mass


\[\pderiv{\rho}{t} + \cdot \nabla \left( \rho \vv \right) = 0\]

and momentum


\[\rho \left( \pderiv{}{t} + \vv \cdot \nabla \right) \vv = -\nabla P - \rho \nabla \Phi;\]

the heat equation


\[\rho T \left( \pderiv{}{t} + \vv \cdot \nabla \right) S = \rho \epsnuc - \nabla \cdot (\vFrad + \vFcon);\]

and Poisson’s equation


\[\nabla^{2} \Phi = 4 \pi G \rho.\]

Here, \(\rho\), \(P\), \(T\), \(S\) and \(\vv\)
are the fluid density, pressure, temperature, specific entropy and
velocity; \(\Phi\) is the self-gravitational potential;
\(\epsnuc\) is the specific nuclear energy generation rate; and
\(\vFrad\) and \(\vFcon\) are the radiative and convective
energy fluxes. An explicit expression for the radiative flux is
provided by the radiative diffusion equation,


\[\vFrad = - \frac{c}{3\kappa\rho} \nabla (a T^{4}),\]

where \(\kappa\) is the opacity and \(a\) the radiation
constant.

The fluid equations are augmented by the thermodynamic relationships
between the four state variables (\(P\), \(T\), \(\rho\)
and \(S\)). Only two of these are required to uniquely specify the
state (we assume that the composition remains fixed over an
oscillation cycle). In GYRE, \(P\) and \(S\) are
adopted as these primary variables[1], and the other two are
presumed to be derivable from them:


\[\rho = \rho(P, S), \qquad
T = T(P, S).\]

The nuclear energy generation rate and opacity are likewise presumed
to be functions of the pressure and entropy:


\[\epsnuc = \epsnuc(P, S), \qquad
\kappa = \kappa(P, S).\]

Footnotes



[1]
This may seem like a strange choice, but it simplifies
the switch between adiabatic and non-adiabatic
calculations






            

          

      

      

    

  

    
      
          
            
  
Equilibrium State

In a static equilibrium state the fluid velocity \(\vv\)
vanishes. The momentum equation then becomes the hydrostatic
equilibrium equation


\[\nabla P = - \rho \nabla \Phi.\]

Assuming the equilibrium is spherically symmetric, this simplifies to


\[\deriv{P}{r} = - \rho \deriv{\Phi}{r}.\]

Poisson’s equation can be integrated once to yield


\[\deriv{\Phi}{r} = \frac{G}{r^{2}} \int 4 \pi \rho r^{2} \, \diff{r} = \frac{G M_{r}}{r^{2}},\]

where the second equality introduces the interior mass


(5)\[M_{r} \equiv \int 4 \pi \rho r^{2} \, \diff{r}.\]

The hydrostatic equilibrium equation thus becomes


\[\deriv{P}{r} = - \rho \frac{G M_{r}}{r^{2}}.\]

The heat equation in the equilibrium state is


\[\rho T \pderiv{S}{t} = \rho \epsnuc - \nabla \cdot (\vFrad + \vFcon).\]

If the star is in thermal equilibrium then the left-hand side
vanishes, and the nuclear heating rate balances the flux divergence
term. Again assuming spherical symmetry, this is written


\[\deriv{}{r} \left( \Lrad + \Lcon \right) = 4 \pi r^{2} \rho \epsnuc,\]

where


\[\Lrad \equiv 4 \pi r^{2} \Fradr, \qquad
\Lcon \equiv 4 \pi r^{2} \Fconr\]

are the radiative and convective luminosities, respectively.




            

          

      

      

    

  

    
      
          
            
  
Linearized Equations

Applying an Eulerian (fixed position, denoted by a prime) perturbation
to the mass and momentum conservation equations, they linearize about
the static equilibrium state as


\[\rho' + \nabla \cdot ( \rho \vv' ) = 0,\]


(6)\[\rho \pderiv{\vv'}{t} = - \nabla P' - \rho' \nabla \Phi - \rho \nabla \Phi'.\]

(in these expressions, the absence of a prime denotes an
equilibrium quantity).  Likewise, Poisson’s equation becomes


\[\nabla^{2} \Phi' = 4 \pi G \rho'\]

Applying a Lagrangian (fixed mass element, denoted by a
\(\delta\)) perturbation to the heat equation, it linearizes about
the equilibrium state as


\[T \pderiv{\delta S}{t} = \delta \epsnuc -
\delta \left( \frac{1}{\rho} \nabla \cdot \vFrad \right),\]

where the heating term \(\delta (\rho^{-1} \nabla \cdot \vFcon)\)
has been dropped[1] due to the continued lack of a workable theory for
pulsation-convection coupling. Likewise applying a
Lagrangian perturbation to the radiative diffusion equation,


\[\delta \vFrad =
\left( 4 \frac{\delta T}{T} - \frac{\delta \rho}{\rho} - \frac{\delta \kappa}{\kappa} \right) \vFrad +
\frac{\delta(\nabla \ln T)}{\sderiv{\ln T}{r}} \Fradr.\]

The thermodynamic relations linearize to


\[\frac{\delta \rho}{\rho} = \frac{1}{\Gammi} \frac{\delta P}{P} - \upsT \frac{\delta S}{\cP},
\qquad
\frac{\delta T}{T} = \nabad \frac{\delta P}{P} + \frac{\delta S}{\cP},\]

and the perturbations to the nuclear energy generation rate and
opacity can be expressed as


\[\frac{\delta \epsnuc}{\epsnuc} = \epsnucad \frac{\delta P}{P} + \epsnucS \frac{\delta S}{\cP},
\qquad
\frac{\delta \kappa}{\kappa} = \kapad \frac{\delta P}{P} + \kapS \frac{\delta S}{\cP}.\]

In these expressions, Eulerian and Lagrangian perturbations to any
scalar quantity \(f\) are related via


\[\frac{\delta f}{f} = \frac{f'}{f} + \frac{\xir}{r} \deriv{\ln f}{\ln r}.\]

Moreover, the thermodynamic partial derivatives are defined as


\[\Gammi = \left( \pderiv{\ln P}{\ln \rho} \right)_{S}, \quad
\upsT = \left( \pderiv{\ln \rho}{\ln T} \right)_{P}, \quad
\cP = \left( \pderiv{S}{\ln T} \right)_{P}, \quad
\nabad = \left( \pderiv{\ln T}{\ln P} \right)_{S},\]

and the nuclear and opacity partials are


\[\epsnucad = \left( \pderiv{\ln \epsnuc}{\ln P} \right)_{\rm ad}, \quad
\epsnucS = \cP \left( \pderiv{\ln \epsnuc}{S} \right)_{P}, \quad
\kapad = \left( \pderiv{\ln \kappa}{\ln P} \right)_{\rm ad}, \quad
\kapS = \cP \left( \pderiv{\ln \kappa}{S} \right)_{P}.\]

The latter can be calculated from corresponding density and
temperature partials via


\[\begin{split}\begin{gathered}
\kapad = \frac{\kaprho}{\Gammi} + \nabad \kapT, \qquad
\kapS = -\upsT \kaprho + \kapT, \\
\epsnucad = \frac{\epsnucrho}{\Gammi} + \nabad \epsnucT, \qquad
\epsnucS = -\upsT \epsnucrho + \epsnucT.
\end{gathered}\end{split}\]

Footnotes



[1]
This is known as a frozen convection
approximation. GYRE offers multiple ways to freeze
convection; see the Convection Effects section for further
details.






            

          

      

      

    

  

    
      
          
            
  
Separated Equations

With a separation of variables in spherical-polar coordinates
\((r,\theta,\phi)\), and assuming an oscillatory time (\(t\))
dependence with angular frequency \(\sigma\), solutions to the
linearized equations can be expressed as


(7)\[\begin{split}\begin{aligned}
\xir(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \txir(r) \, Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii \sigma t) \right], \\
\xit(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \txih(r) \, \pderiv{}{\theta} Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii \sigma t) \right], \\
\xip(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \txih(r) \, \frac{\ii m}{\sin\theta} Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii \sigma t) \right], \\
f'(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \tf'(r) \, Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii \sigma t) \right].
\end{aligned}\end{split}\]

Here, \(\xir\), \(\xit\) and \(\xip\) are the radial,
polar and azimuthal components of the displacement perturbation vector
\(\vxi\); \(Y^{m}_{\ell}\) is the spherical harmonic with
harmonic degree \(\ell\) and azimuthal order \(m\); and again
\(f\) stands for any perturbable scalar. The displacement
perturbation vector is related to the velocity perturbation via


\[\vv' = \pderiv{\vxi}{t}.\]

Substituting the above solution forms into the linearized equations,
the mechanical (mass and momentum conservation) equations become


\[\trho' + \frac{1}{r^{2}} \deriv{}{r} \left( \rho r^{2} \txir \right) - \frac{\ell(\ell+1)}{r} \rho \txih = 0,\]


\[-\sigma^{2} \rho \txir = - \deriv{\tP'}{r} - \trho' \deriv{\Phi}{r} - \rho \deriv{\tPhi'}{r},\]


\[-\sigma^{2} \rho r \txih = - \tP' - \rho \tPhi'.\]

Likewise, Poisson’s equation becomes


\[\frac{1}{r^{2}} \deriv{}{r} \left( r^{2} \deriv{\tPhi'}{r} \right) - \frac{\ell(\ell+1)}{r^{2}} \txih = 4 \pi G \trho'\]

and the heat equation becomes


\[-\ii \sigma T \delta \tS = \delta \tepsnuc
- \deriv{\delta \tLrad}{M_{r}} + \frac{\ell(\ell+1)}{\sderiv{\ln T}{r}} \frac{\Fradr}{\rho}  \frac{\tT'}{T} +
 \ell(\ell + 1) \frac{\txih}{r} \deriv{\Lrad}{M_{r}},\]

where


\[\delta \tLrad \equiv 4 \pi r^{2} \left( \delta \tFradr + 2 \frac{\txir}{r} \Fradr \right)\]

is the Lagrangian perturbation to the radiative luminosity. The radial part of the radiative diffusion equation becomes


\[\delta\tFradr = \left[
4 \frac{\delta \tT}{T} - \frac{\delta\trho}{\rho} - \frac{\delta\tkappa}{\kappa} +
\frac{\sderiv{(\delta \tT/T)}{\ln r}}{\sderiv{\ln T}{\ln r}} \right] \Fradr.\]

Finally, the thermodynamic, nuclear and opacity relations become


\[\frac{\delta \trho}{\rho} = \frac{1}{\Gammi} \frac{\delta \tP}{P} - \upsT \frac{\delta \tS}{\cP},
\qquad
\frac{\delta \tT}{T} = \nabla_{\rm ad} \frac{\delta \tP}{P} + \frac{\delta \tS}{\cP},\]


\[\frac{\delta \tepsnuc}{\epsnuc} = \epsnucad \frac{\delta \tP}{P} + \epsnucS \frac{\delta \tS}{\cP},
\qquad
\frac{\delta \tkappa}{\kappa} = \kapad \frac{\delta \tP}{P} + \kapS \frac{\delta \tS}{\cP}.\]




            

          

      

      

    

  

    
      
          
            
  
Boundary Conditions

To form a closed system, the separated equations
are augmented by algebraic relations at the inner and outer boundaries
of the computational domain, and possibly at interior points as well.


Inner Boundary

When the inner boundary is placed at the stellar origin (\(r=0\)),
the requirement that solutions remain finite leads to the set of
regularity conditions


\[\begin{split}\begin{aligned}
\txir - \ell \txih = 0, \\
\ell \tPhi' - r \deriv{\tPhi'}{r} = 0, \\
\delta \tS = 0.
\end{aligned}\end{split}\]

Sometimes it’s desirable that the inner boundary is instead placed at
\(r > 0\) — for instance, to excise the stellar core from
the oscillation calculations. Then, there is much more flexibility in the
choice of inner boundary condition. Possible options include setting
\(\txir = 0\) or \(\txih=0\) instead of the first equation
above.



Outer Boundary

The outer boundary typically corresponds to the stellar surface. Under
the assumption that the density vanishes on and above this surface, the
gravitational potential must match onto a solution to Laplace’s
equation that remains finite at infinity, leading to the potential
boundary condition


\[(\ell + 1) \tPhi' + r \deriv{\tPhi'}{r} = 0.\]

Likewise, the assumption that there is no external pressure acting on
the star (consistent with the vanishing surface density) gives the
momentum boundary condition


\[\delta \tP = 0.\]

Finally, the thermal boundary condition can be derived from the
equation


\[T^{4}(\tau) = \frac{4\sigma}{3} \Fradr \left( \tau + \frac{2}{3} \right)\]

describing the thermal structure of an atmosphere under the combined
plane-parallel, grey, Eddington, local thermodynamic equilibrium and
radiative equilibrium approximations. Here, \(\tau\) is the
vertical optical depth and \(\sigsb\) the Stefan-Boltzmann
constant. Setting \(\tau=0\) (again, consistent with the vanishing
surface density) and perturbing this equation yields the desired
boundary condition


\[4 \frac{\delta \tT}{T} = \frac{\delta \tFradr}{\Fradr}.\]

Complications arise when realistic stellar models are considered,
because these typically extend only out to an optical depth
\(\tau=2/3\) (or some similar value) corresponding to the
photosphere. In such cases the density does not vanish at the nominal
stellar surface, and the outer boundary conditions must be modified to
account for the effects of the atmosphere region lying above the
surface. Many stellar oscillation codes, including GYRE, can adopt
more sophisticated formulations for the momentum boundary condition
— for instance, based on the assumption that the outer atmosphere
has an isothermal stratification. However, the atmospheric effects on
the potential and thermal boundary conditions are usually neglected.



Internal Boundaries

Internal boundaries arise when the density and other related
quantities show a radial discontinuity within the star. Across such a
discontinuity \(\txir\), \(\delta \tP\) and \(\delta
\tFradr\) must remain continuous[1]. Internal boundary
conditions on other perturbations follow from integrating the
separated equations across the discontinuity,
resulting in


\[\begin{split}\begin{aligned}
\tP^{\prime +} - \tP^{\prime -} &= \deriv{\Phi}{r} \left( \rho^{+} - \rho^{-} \right) \txir, \\
\left. \deriv{\tPhi'}{r} \right|^{+} - \left. \deriv{\tPhi'}{r} \right|^{-} &= - 4 \pi G \left( \rho^{+} - \rho^{-} \right) \txir, \\
\tT^{\prime +} - \tT^{\prime -} &= 0.
\end{aligned}\end{split}\]

Here, + (-) superscripts indicate quantities evaluated on the inner
(outer) side of the discontinuity.

Footnotes



[1]
This is to ensure that the fluid doesn’t ‘tear’, and
that pressure forces and radiative heating remain
finite.







            

          

      

      

    

  

    
      
          
            
  
Dimensionless Formulation

To improve numerical stability, GYRE solves the separated
equations and boundary conditions by recasting them into a dimensionless form that
traces its roots back to Dziembowski (1971) [https://ui.adsabs.harvard.edu/abs/1971AcA....21..289D/abstract].


Variables

The independent variable is the fractional radius \(x \equiv r/R\)
(with \(R\) the stellar radius), and the dependent variables
\(\{y_{1},y_{2},\ldots,y_{6}\}\) are


(8)\[\begin{split}\begin{aligned}
y_{1} &= x^{2 - \ell}\, \frac{\txir}{r}, \\
y_{2} &= x^{2-\ell}\, \frac{\tP'}{\rho g r}, \\
y_{3} &= x^{2-\ell}\, \frac{\tPhi'}{gr}, \\
y_{4} &= x^{2-\ell}\, \frac{1}{g} \deriv{\tPhi'}{r}, \\
y_{5} &= x^{2-\ell}\, \frac{\delta \tS}{c_{p}}, \\
y_{6} &= x^{-1-\ell}\, \frac{\delta \tLrad}{L}.
\end{aligned}\end{split}\]



Oscillation Equations

The dimensionless oscillation equations are


(9)\[\begin{split}\begin{aligned}
x \deriv{y_{1}}{x} &=
\left( \frac{V}{\Gammi} - 1 - \ell \right) y_{1} +
\left( \frac{\ell(\ell+1)}{c_{1} \omega^{2}} - \alphagam \frac{V}{\Gammi} \right) y_{2} +
\alphagrv \frac{\ell(\ell+1)}{c_{1} \omega^{2}} y_{3} +
\upsT \, y_{5}, \\
%
x \deriv{y_{2}}{x} &=
\left( c_{1} \omega^{2} - \fpigam \As \right) y_{1} +
\left( 3 - U + \As - \ell \right) y_{2} -
\alphagrv y_{4} +
\upsT \, y_{5}, \\
%
x \deriv{y_{3}}{x} &=
\alphagrv \left( 3 - U - \ell \right) y_{3} +
\alphagrv y_{4} \\
%
x \deriv{y_{4}}{x} &=
\alphagrv \As U y_{1} +
\alphagrv \frac{V}{\Gammi} U y_{2} +
\alphagrv \ell(\ell+1) y_{3} -
\alphagrv (U + \ell - 2) y_{4}
- \alphagrv \upsT \, U y_{5}, \\
%
x \deriv{y_{5}}{x} &=
\frac{V}{\frht} \left[ \nabad (U - c_{1}\omega^{2}) - 4 (\nabad - \nabla) + \ckapad V \nabla + \cdif \right] y_{1} + \mbox{} \\
&
\frac{V}{\frht} \left[ \frac{\ell(\ell+1)}{c_{1} \omega^{2}} (\nabad - \nabla) - \ckapad V \nabla - \cdif \right] y_{2} + \mbox{} \\
&
\alphagrv \frac{V}{\frht} \left[ \frac{\ell(\ell+1)}{c_{1} \omega^{2}} (\nabad - \nabla) \right] y_{3} +
\alphagrv \frac{V \nabad}{\frht} y_{4} + \mbox{} \\
&
\left[ \frac{V \nabla}{\frht} (4 \frht - \ckapS) + \dfrht + 2 - \ell \right] y_{5} -
\frac{V \nabla}{\frht \crad} y_{6} \\
%
x \deriv{y_{6}}{x} &=
\left[ \alphahfl \ell(\ell+1) \left( \frac{\nabad}{\nabla} - 1 \right) \crad - V \cepsad - \alphaegv c_{egv} \nabad V \right] y_{1} + \mbox{} \\
&
\left[ V \cepsad - \ell(\ell+1) \crad \left( \alphahfl \frac{\nabad}{\nabla} - \frac{3 + \dcrad}{c_{1}\omega^{2}} \right) + \alphaegv c_{egv} \nabad V \right] y_{2} + \mbox{} \\
&
\alphagrv \left[ \ell(\ell+1) \crad \frac{3 + \dcrad}{c_{1}\omega^{2}} \right] y_{3} + \mbox{} \\
&
\left[ \cepsS - \alphahfl \frac{\ell(\ell+1)\crad}{\nabla V} + \ii \alphathm \omega \cthk + \alphaegv c_{egv} \right] y_{5} -
\left[ 1 + \ell \right] y_{6},
\end{aligned}\end{split}\]

where the dimensionless oscillation frequency is introduced as


(10)\[\omega \equiv \sqrt{\frac{R^{3}}{GM}},\]

(with \(M\) the stellar mass). These differential equations are
derived from the separated equations, with the insertion of ‘switch’
terms (denoted \(\alpha\)) that allow certain pieces of physics to
be altered. See the Physics Switches section for more
details.

For non-radial adiabatic calculations, the last two equations above
are set aside and the \(y_{5}\) terms dropped from the first four
equations. For radial adiabatic calculations with
reduce_order=.TRUE. (see the Oscillation Parameters
section), the last four equations are set aside and the first two
replaced by


\[\begin{split}\begin{aligned}
x \deriv{y_{1}}{x} &=
\left( \frac{V}{\Gammi} - 1 \right) y_{1} - \frac{V}{\Gamma_{1}} y_{2}, \\
%
x \deriv{y_{2}}{x} &=
\left( c_{1} \omega^{2} + U - \As \right) y_{1} + \left( 3 - U + \As \right) y_{2}.
\end{aligned}\end{split}\]



Boundary Conditions


Inner Boundary

When inner_bound='REGULAR', GYRE applies
regularity-enforcing conditions at the inner boundary:


\[\begin{split}\begin{aligned}
c_{1} \omega^{2} y_{1} - \ell y_{2} - \alphagrv \ell y_{3} &= 0, \\
\alphagrv \ell y_{3} - (2\alphagrv - 1) y_{4} &= 0, \\
y_{5} &= 0.
\end{aligned}\end{split}\]

(these are the dimensionless equivalents to the expressions appearing
in the Boundary Conditions section).

When inner_bound='ZERO_R', the first and second
conditions above are replaced with zero radial displacement
conditions,


\[\begin{split}\begin{aligned}
y_{1} &= 0, \\
y_{4} &= 0.
\end{aligned}\end{split}\]

Likewise, when inner_bound='ZERO_H', the first and
second conditions are replaced with zero horizontal displacement
conditions,


\[\begin{split}\begin{aligned}
y_{2} - y_{3} &= 0, \\
y_{4} &= 0.
\end{aligned}\end{split}\]



Outer Boundary

When outer_bound='VACUUM', GYRE applies the
outer boundary conditions


\[\begin{split}\begin{aligned}
y_{1} - y_{2} &= 0 \\
\alphagrv U y_{1} + (\alphagrv \ell + 1) y_{3} + \alphagrv y_{4} &= 0 \\
(2 - 4\nabad V) y_{1} + 4 \nabad V y_{2} + 4 \frht y_{5} - y_{6} &= 0
\end{aligned}\end{split}\]

(these are the dimensionless equivalents to the expressions appearing
in the Boundary Conditions section).

When outer_bound='DZIEM', the first condition
above is replaced by the Dziembowski (1971) [https://ui.adsabs.harvard.edu/abs/1971AcA....21..289D/abstract] outer boundary condition,


\[\left\{ 1 + V^{-1} \left[ \frac{\ell(\ell+1)}{c_{1} \omega^{2}} - 4 - c_{1} \omega^{2} \right] \right\} y_{1} -
y_{2} = 0.\]

When outer_bound='UNNO' or 'JCD', the
first condition is replaced by the (possibly-leaky) outer boundary
conditions described by Unno et al. (1989) [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract] and
Christensen-Dalsgaard (2008) [https://ui.adsabs.harvard.edu/abs/2008Ap&SS.316..113C/abstract], respectively. When
outer_bound='ISOTHERMAL', the first condition is
replaced by a (possibly-leaky) outer boundary condition derived from a
local dispersion analysis of waves in an isothermal atmosphere.

Finally, when outer_bound='GAMMA', the first
condition is replaced by the outer momentum boundary condition
described by Ong & Basu (2020) [https://ui.adsabs.harvard.edu/abs/2020ApJ...898..127O/abstract].


Internal Boundaries

Across density discontinuities, GYRE applies the boundary conditions


\[\begin{split}\begin{aligned}
U^{+} y_{2}^{+} - U^{-} y_{2}^{-} &= y_{1} (U^{+} - U^{-}) \\
y_{4}^{+} - y_{4}^{-} &= -y_{1} (U^{+} - U^{-}) \\
y_{5}^{+} - y_{5}^{-} &= - V^{+} \nabad^{+} (y_{2}^{+} - y_{1}) +
V^{-} \nabad^{-} (y_{2}^{-} - y_{1})
\end{aligned}\end{split}\]

(these are the dimensionless equivalents to the expressions appearing
in the Boundary Conditions section). Here, + (-) superscripts
indicate quantities evaluated on the inner (outer) side of the
discontinuity. \(y_{1}\), \(y_{3}\) and \(y_{6}\) remain
continuous across discontinuities, and therefore don’t need these
superscripts.





Structure Coefficients

The various stellar structure coefficients appearing in the
dimensionless oscillation equations and boundary conditions are
defined as follows:


\[\begin{split}\begin{gathered}
V = -\deriv{\ln P}{\ln r} \qquad
V_{2} = x^{-2} V \qquad
\As = \frac{1}{\Gamma_{1}} \deriv{\ln P}{\ln r} - \deriv{\ln \rho}{\ln r} \qquad
U = \deriv{\ln M_{r}}{\ln r} \\
%
c_1 = \frac{r^{3}}{R^{3}} \frac{M}{M_{r}} \qquad
\fpigam =
\begin{cases}
\alphapi & \As > 0, x < x_{\rm atm} \\
\alphagam & \As > 0, x > x_{\rm atm} \\
1 & \text{otherwise}
\end{cases}\\
%
\nabla = \deriv{\ln T}{\ln P} \qquad
\clum = x^{-3} \frac{\Lrad+\Lcon}{L} \qquad
\crad = x^{-3} \frac{\Lrad}{L} \qquad
\dcrad = \deriv{\ln \crad}{\ln r} \\
%
\frht = 1 - \alpharht \frac{\ii \omega \cthn}{4} \qquad
\dfrht = - \alpharht \frac{\ii \omega \cthn \dcthn}{4 \frht} \\
%
\ckapad = \frac{\alphakar \kaprho}{\Gamma_{1}} + \nabad \alphakat \kapT \qquad
\ckapS = - \upsT \alphakar \kaprho + \alphakat \kapT \\
%
\ceps = x^{-3} \frac{4\pi r^{3} \rho \epsnuc}{L} \qquad
\cepsad = \ceps \epsnucad \qquad
\cepsS = \ceps \epsnucS \\
%
\cdif = - 4 \nabad V \nabla + \nabad \left(V + \deriv{\ln \nabad}{\ln x} \right) \\
%
\cthn = \frac{\cP}{a c \kappa T^{3}} \sqrt{\frac{GM}{R^{3}}} \qquad
\dcthn = \deriv{\ln \cthn}{\ln r} \\
%
\cthk = x^{-3} \frac{4\pi r^{3} \cP T \rho}{L} \sqrt{\frac{GM}{R^{3}}}
\cegv = x^{-3} \frac{4\pi r^{3} \rho \epsgrav}{L}
\end{gathered}\end{split}\]



Physics Switches

GYRE offers the capability to adjust the oscillation equations through
a number of physics switches, controlled by parameters in the
&osc namelist group (see the Oscillation Parameters section). The
table below summarizes the mapping between the switches appearing in
the expressions above, and the corresponding namelist parameters.








	Symbol

	Parameter

	Description





	\(\alphagrv\)

	alpha_grv

	Scaling factor for gravitational potential perturbations. Set to 1
for normal behavior, and to 0 for the Cowling (1941) [https://ui.adsabs.harvard.edu/abs/1941MNRAS.101..367C/abstract]
approximation



	\(\alphathm\)

	alpha_thm

	Scaling factor for local thermal timescale. Set to 1 for normal
behavior, to 0 for the non-adiabatic reversible (NAR) approximation
(see Gautschy et al., 1990 [https://ui.adsabs.harvard.edu/abs/1990MNRAS.245..597G/abstract]), and to a large value to approach
the adiabatic limit



	\(\alphahfl\)

	alpha_hfl

	Scaling factor for horizontal flux perturbations. Set to 1 for
normal behavior, and to 0 for the non-adiabatic radial flux (NARF)
approximation (see Townsend, 2003b [https://ui.adsabs.harvard.edu/abs/2003MNRAS.343..125T/abstract])



	\(\alphagam\)

	alpha_gam

	Scaling factor for g-mode isolation. Set to 1 for normal behavior,
and to 0 to isolate g modes as described by Ong & Basu (2020) [https://ui.adsabs.harvard.edu/abs/2020ApJ...898..127O/abstract]



	\(\alphapi\)

	alpha_pi

	Scaling factor for p-mode isolation. Set to 1 for normal behavior,
and to 0 to isolate p modes as described by Ong & Basu (2020) [https://ui.adsabs.harvard.edu/abs/2020ApJ...898..127O/abstract]



	\(\alphakar\)

	alpha_kar

	Scaling factor for opacity density partial derivative. Set to 1 for normal
behavior, and to 0 to suppress the density part of the \(\kappa\) mechanism



	\(\alphakat\)

	alpha_kat

	Scaling factor for opacity temperature partial derivative. Set to 1 for normal
behavior, and to 0 to suppress the temperature part of the \(\kappa\) mechanism



	\(\alpharht\)

	alpha_rht

	Scaling factor for time-dependent term in the radiative heat
equation (see Unno & Spiegel, 1966 [https://ui.adsabs.harvard.edu/abs/1966PASJ...18...85U/abstract]). Set to 1 to include this
term (Unno calls this the Eddington approximation), and to 0 to
ignore the term



	\(\alphatrb\)

	alpha_trb

	Scaling factor for the turbulent mixing length. Set to the
convective mixing length to include the turbulent damping term
(see the Convection Effects section), and to 0 to ignore the term










            

          

      

      

    

  

    
      
          
            
  
Rotation Effects

The oscillation equations presented in the preceding sections are
formulated for a non-rotating star. The corresponding equations for a
rotating star are significantly more complicated, and a complete
treatment of rotation lies beyond the scope of GYRE. However, GYRE can
include two important effects arising from rotation.


Doppler Shift

A lowest-order effect of rotation arises in the Doppler shift from
transforming between the inertial reference frame and the local
co-rotating reference frame. To incorporate this effect in the
separated equations, all instances of the
inertial-frame frequency \(\sigma\) are replaced by the
co-rotating frequency


(11)\[\sigmac \equiv \sigma - m \Orot,\]

where \(m\) is the azimuthal order of the mode and \(\Orot\)
is the rotation angular frequency. GYRE assumes shellular rotation
(see, e.g., Meynet & Maeder, 1997 [https://ui.adsabs.harvard.edu/abs/1997A&A...321..465M/abstract]), and so the latter can in
principle be a function of radial coordinate \(r\). The
corresponding modifications to the dimensionless formulation involve replacing the dimensionless inertial-frame
frequency \(\omega\) with the dimensionless co-rotating frequency


\[\omegac \equiv \omega - m \Orot \sqrt{\frac{R^{3}}{GM}}.\]



Perturbative Coriolis Force Treatment

Another lowest-order effect of rotation arises from the Coriolis
force. For slow rotation, this effect can be determined through a
perturbation expansion technique (see, e.g., section 19.2 of
Unno et al., 1989 [https://ui.adsabs.harvard.edu/abs/1989nos..book.....U/abstract]). To first order in \(\Orot\), the
frequency of a mode is shifted by the amount


\[\Delta \sigma = m \int_{0}^{R} \Orot \, \deriv{\beta}{r} \diff{r},\]

where the rotation splitting kernel is


\[\deriv{\beta}{r} =
\frac{\left\{ \txir^{2} + [\ell(\ell+1) - 1] \txih^{2} - 2 \txir \txih \right\} \rho r^{2}}
{\int_{0}^{R} \left\{ \txir^{2} + \ell(\ell+1) \txih^{2} \right\} \rho r^{2} \diff{r}}\]

In this latter expression, the eigenfunctions \(\txir\) and
\(\txih\) are evaluated from solutions to the oscillation
equations without rotation. Therefore, the expression above for
\(\Delta \sigma\) can be applied as a post-calculation correction
to non-rotating eigenfrequencies.



Non-Perturbative Coriolis Force Treatment

The perturbation expansion technique above breaks down when
\(\Orot/\sigmac \gtrsim 1\). To deal with such cases, the
gyre frontend [1] can incorporate a
non-perturbative treatment of the Coriolis force based on the
‘traditional approximation of rotation’ (TAR). The TAR was first
introduced by Eckart (1960; Hydrodynamics of Oceans and Atmospheres)
and has since been used extensively within the pulsation community
(see, e.g., Bildsten et al., 1996 [https://ui.adsabs.harvard.edu/abs/1996ApJ...460..827B/abstract]; Lee & Saio, 1997 [https://ui.adsabs.harvard.edu/abs/1997ApJ...491..839L/abstract];
Townsend, 2003a [https://ui.adsabs.harvard.edu/abs/2003MNRAS.340.1020T/abstract]; Bouabid et al., 2013 [https://ui.adsabs.harvard.edu/abs/2013MNRAS.429.2500B/abstract];
Townsend, 2020 [https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2670T/abstract]).

Within the TAR, the solution forms given in
eqn. (7) are replaced by


(12)\[\begin{split}\begin{aligned}
\xir(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \txir(r) \, \houghr(\theta) \, \exp(\ii m \phi -\ii \sigma t) \right], \\
\xit(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \txih(r) \, \frac{\hought(\theta)}{\sin\theta} \, \exp(\ii m \phi -\ii \sigma t) \right], \\
\xip(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \txih(r) \, \frac{\houghp(\theta)}{\ii \sin\theta} \, \exp(\ii m \phi -\ii \sigma t) \right], \\
f'(r,\theta,\phi;t) &= \operatorname{Re} \left[ \sqrt{4\pi} \, \tf'(r) \, \houghr(\theta) \, \exp(\ii m \phi -\ii \sigma t) \right]
\end{aligned}\end{split}\]

Here, the Hough functions \(\houghr\), \(\hought\) and
\(\houghp\) are the eigenfunctions obtained by solving Laplace’s
tidal equations (TEs), a second-order system of differential equations
and boundary conditions in the polar (\(\theta\)) coordinate (see
Townsend 2020 [https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2670T/abstract]). Together with the associated eigenvalue
\(\lambda\), they depend on the harmonic degree \(\ell\)[2] and azimuthal order \(m\), and the spin parameter


\[q \equiv \frac{2 \Orot}{\sigmac}.\]


Solution Families

Solutions to the TEs can be grouped into two families based on the
behavior of the eigenfunctions and eigenvalue in the limit \(\Orot
\rightarrow 0\). For the gravito-acoustic family,


(13)\[\begin{split}\left.
\begin{aligned}
\houghr(\theta) \ \rightarrow & \ Y^{m}_{\ell}(\theta,0) \\
\hought(\theta) \ \rightarrow & \ \sin\theta \pderiv{}{\theta} Y^{m}_{\ell}(\theta,0) \\
\houghp(\theta) \ \rightarrow & \ - m Y^{m}_{\ell}(\theta,0)
\end{aligned}
\right\}
\quad
\text{as } \Orot \rightarrow 0.\end{split}\]

and \(\lambda \rightarrow \ell(\ell+1)\). With these expressions,
the solution forms (12) reduce to those given
in eqn. (7).

Conversely, for the Rossby family


(14)\[\begin{split}\left.
\begin{aligned}
\houghr(\theta) \ \rightarrow & \ 0 \\
\hought(\theta) \ \rightarrow & \ m Y^{m}_{\ell}(\theta,0) \\
\houghp(\theta) \ \rightarrow & \ - \sin\theta \pderiv{}{\theta} Y^{m}_{\ell}(\theta,0)
\end{aligned}
\right\}
\quad
\text{as } \Orot \rightarrow 0.\end{split}\]

and \(\lambda \rightarrow 0\). Moreover, Rossby-mode
eigenfrequencies also show the limiting behavior


(15)\[\sigmac = \frac{2 m \Orot}{\ell(\ell+1)}
\quad
\text{as } \Orot \rightarrow 0,\]

which is independent of the stellar structure.



Implementing the TAR

To implement the TAR in the separated equations and boundary conditions,
all instances of the term \(\ell(\ell+1)\) are replaced by the TE
eigenvalue \(\lambda\). Then, all instances of the harmonic degree
\(\ell\) are replaced by \(\elle\), an effective harmonic
degree found by solving


\[\elle(\elle+1) = \lambda.\]

Similar steps are taken in the dimensionless formulation, but in the definitions of the dependent variables
\(\{y_{1},y_{2},\ldots,y_{6}\}\), \(\ell\) is replaced by
\(\elli\), the effective harmonic degree evaluated at the inner
boundary.

Footnotes



[1]
Currently the TAR cannot be used with the
gyre_tides frontend, because it doesn’t play well with
forcing by the tidal potential \(\PhiT\).



[2]
The harmonic degree isn’t formally a ‘good’ quantum
number in the TAR; however, it can still be used to
identify Hough functions by considering their
behavior in the limit \(\Orot \rightarrow 0\),
as given in eqns. (13) and
(14).








            

          

      

      

    

  

    
      
          
            
  
Convection Effects

The oscillation equations presented in the preceding sections neglect
the thermal and mechanical effects of convection. GYRE provides
functionality for controlling how the thermal effects are suppressed,
and how the mechanical effects can be included in a limited way.


Frozen Convection

In the derivation of the linearized equations, a term \(\delta (\rho^{-1} \nabla \cdot
\vFcon)\) is dropped from the perturbed heat equation. This is known as
a frozen convection approximation, and is grounded in the assumption
that the energy transport by convection remains unaffected affected by
the pulsation. There’s more than one way to freeze convection;
Pesnell (1990) [https://ui.adsabs.harvard.edu/abs/1990ApJ...363..227P/abstract] presents a systematic review of different
approaches. GYRE currently implements a subset of these:


	Pesnell’s case 1, neglecting \(\delta (\rho^{-1} \nabla \cdot \vFcon)\) in the perturbed heat equation.


	Pesnell’s case 4, neglecting \(\delta \Lcon\) (the Lagrangian
perturbation to the convective luminosity) in the perturbed heat
equation.




For further details, see the conv_scheme parameter in the
Oscillation Parameters section.



Turbulent Damping

The Reynolds number in stars is very large, and thus convection tends
to be turbulent. Following the treatment by
Savonije & Witte (2002) [https://ui.adsabs.harvard.edu/abs/2002A&A...386..211S/abstract], GYRE can partially incorporate the
mechanical effects of this turbulence by adding a term


\[f_{r,{\rm visc}} = - \frac{1}{r^{2}} \pderiv{}{r} \left( \rho \nu r^{2} \pderiv{v'_{r}}{r} \right)\]

to the radial component of the linearized momentum equation
(6), representing the viscous force arising from
radial fluid motion. Because this term depends on \(v'_{r}\), it
is phase-shifted by a quarter cycle relative to the other terms in the
equation, and acts like a drag force that damps oscillations. The
turbulent viscous coefficient \(\nu\) is evaluated as


\[\nu = \frac{(\alphatrb H_{P})^{2}}{\tconv}
\left[ 1 + \tconv \frac{\sigma}{2\pi} \right]^{-1},\]

where \(H_{P}\) is the pressure scale height, \(\alphatrb\) is
the turbulent mixing length (in units of \(H_{P}\)), and
\(\tconv\) the convective turnover timescale. This expression is
adapted from equation (18) of Savonije & Witte (2002) [https://ui.adsabs.harvard.edu/abs/2002A&A...386..211S/abstract], with an
exponent \(s=1\).

In GYRE \(\alphatrb\) is implemented as a switch (see the
Physics Switches section). A reasonable choice is to set
this parameter equal to the MLT mixing length parameter
\(\alpha_{\rm MLT}\) of the stellar model.





            

          

      

      

    

  

    
      
          
            
  
Tidal Effects

To simulate the effects of tidal forcing by a companion, the
gyre_tides frontend solves a modified form of the
linearized momentum equation (6), namely


\[\rho \pderiv{\vv'}{t} = - \nabla P' - \rho' \nabla P - \rho \nabla \Phi' - \rho \nabla \PhiT.\]

The final term on the right-hand side represents the external force
arising from the tidal gravitational potential \(\PhiT\).


Tidal Potential

The tidal potential can be expressed via the superposition


(16)\[\PhiT = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} \sum_{k=-\infty}^{\infty} \PhiTlmk.\]

of partial tidal potentials defined by


\[\PhiTlmk \equiv
- \epsT \,
\frac{GM}{R} \,
\cbar_{\ell,m,k}
\left( \frac{r}{R} \right)^{\ell} Y^{m}_{\ell}(\theta, \phi) \,
\exp(- \ii k \Oorb t).\]

(the summation over \(\ell\) and \(m\) comes from a multipolar
space expansion of the potential, and the summation over \(k\)
from a Fourier time expansion). Here,


\[\epsT = \left( \frac{R}{a} \right)^{3} = \frac{\Oorb R^{3}}{GM} \frac{q}{1+q}\]

quantifies the overall strength of the tidal forcing, in terms of the
companion’s mass \(q M\), semi-major axis \(a\) and orbital
angular frequency \(\Oorb\). These expressions, and the definition
of the tidal expansion coefficients \(\cbar_{\ell,m,k}\), are presented in
greater detail in Sun et al. (2023) [https://ui.adsabs.harvard.edu/abs/2023ApJ...945...43S/abstract].



Separated Equations

Because the tidal potential (16) superposes many
different spherical harmonics, the solution forms
(7) must be replaced by the more-general
expressions


(17)\[\begin{split}\begin{aligned}
\xir(r,\theta,\phi;t) &= \sum_{\ell,m,k} \txirlmk(r) \, Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii k \Oorb t), \\
\xit(r,\theta,\phi;t) &= \sum_{\ell,m,k} \txihlmk(r) \, \pderiv{}{\theta} Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii k \Oorb t), \\
\xip(r,\theta,\phi;t) &= \sum_{\ell,m,k} \txihlmk(r) \, \frac{\ii m}{\sin\theta} Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii k \Oorb t), \\
f'(r,\theta,\phi;t) &= \sum_{\ell,m,k} \tflmk'(r) \, Y^{m}_{\ell}(\theta,\phi) \, \exp(-\ii k \Oorb t)
\end{aligned}\end{split}\]

(the notation for the sums has been abbreviated). Substituting these
solution forms into the linearized equations,
and taking advantage of the orthonormality of the spherical harmonics,
leads to a fully separated set of differential equations for each
combination of \(\ell\), \(m\) and \(k\). A given set
resembles the regular separated equations, with
just a couple changes:


	The perturbation \(\tPhi'\) is replaced by \(\tPsi' \equiv
\tPhi' + \tPhiT\), representing the total (self + tidal)
gravitational potential perturbation.


	Rather than being an eigenvalue parameter, the oscillation frequency
is set by \(\sigma = k \Oorb\), representing the forcing
frequency of the partial tidal potential in an inertial frame.




The latter change means that the dimensionless frequency (10) becomes


\[\omega = \alphafrq \, k \Oorb \sqrt{\frac{R^{3}}{GM}},\]

where \(\alphafrq\) is an additional term introduced to allow
tuning of the tidal forcing frequency (see the alpha_frq parameter
in the Tidal Parameters section).



Boundary Conditions

The boundary conditions accompanying the separated equations for a
given \(\{\ell,m,k\}\) combination resemble those presented
previously, except that the outer potential
boundary condition becomes


\[(\ell + 1) \tPsi' + r \deriv{\tPsi'}{r} = (2 \ell + 1) \tPhiTlmk,\]

where


(18)\[\tPhiTlmk \equiv - \epsT \,
\frac{GM}{R} \,
\cbar_{\ell,m,k}
\left( \frac{r}{R} \right)^{\ell}.\]

describes the radial dependence of the partial tidal potential.





            

          

      

      

    

  

    
      
          
            
  
Composite Polytropes

Composite polytropes are an extension of standard polytrope [https://en.wikipedia.org/wiki/Polytrope]
models for stellar structure, to allow for discontinuities in the
density \(\rho\) and/or the polytropic index \(n\).  This
appendix lays out the mathematical formalism[1]
underpinning them; it is intended to complement the Building POLY Models
appendix, which describes how composite polytrope models can be built
using the build_poly executable.



	Equation of State

	Structure Equations
	Lane-Emden Equation

	Continuity Relations





	Solution Method
	Specification

	Solution





	Physical Variables

	Structure Coefficients





Footnotes



[1]
The formalism here is based on Mixed polytrope with density
discontinuities (Christensen-Dalsgaard, 2015, unpublished),
with extensions to allow for constant-density regions.






            

          

      

      

    

  

    
      
          
            
  
Equation of State

Consider a composite polytrope composed of \(\nreg\) regions
extending from the origin out to the stellar surface. In the
\(i\)’th region (\(1 \leq i \leq \nreg\)), the pressure
\(P\) and density \(\rho\) are related by the polytropic
equation-of-state


(19)\[\frac{P_{i}}{P_{i,0}} = \left( \frac{\rho_{i}}{\rho_{i,0}} \right)^{(n_{i} + 1)/n_{i}}\]

where the normalizing pressure \(P_{i,0}\) and density
\(\rho_{i,0}\), together with the polytropic index \(n_{i}\),
are constant across the region but may change from one region to the
next. At the \(\nreg-1\) boundaries between adjacent regions, the
pressure and interior mass \(M_{r}\) are required to be
continuous, but the density may jump.




            

          

      

      

    

  

    
      
          
            
  
Structure Equations


Lane-Emden Equation

In the \(i\)’th region, a composite polytrope satisfies the
equation of hydrostatic equilibrium


\[-\frac{1}{\rho_{i}} \deriv{P_{i}}{r} = \deriv{\Phi_{i}}{r}\]

Substituting in the polytropic equation-of-state 19 yields


\[\frac{(n_{i}+1) P_{i,0}}{\rho_{i,0}^{1+1/n_{i}}} \deriv{}{r} \left( \rho_{i}^{1/n_{i}} \right) = - \deriv{\Phi_{i}}{r},\]

which can then be integrated with respect to \(r\) to give


\[\frac{(n_{i}+1)P_{i,0}}{\Phi_{i,0} \, \rho_{i,0}} \left( \frac{\rho_{i}^{1/n_{i}}}{\rho_{i,0}^{1/n_{i}}} - 1 \right) = \left( 1 - \frac{\Phi_{i}}{\Phi_{i,0}} \right).\]

Here, the constants of integration have been chosen so that
\(\Phi_{i} = \Phi_{i,0}\) when \(\rho_{i} =
\rho_{i,0}\). Rearranging, the density follows as


\[\rho_{i} = \rho_{i,0} \, \theta_{i}^{n_{i}},\]

where the polytropic dependent variable is introduced as


\[\theta_{i} = \left[ \frac{\Phi_{i,0} \, \rho_{i,0}}{(n_{i} + 1) P_{i,0}} \left( 1 - \frac{\Phi_{i}}{\Phi_{i,0}} \right)  + 1 \right].\]

With these expressions, Poisson’s equation


\[\frac{1}{r^{2}} \deriv{}{r} \left( r^{2} \deriv{P_{i}}{r} \right) = 4 \pi G \rho_{i}\]

is recast as


\[\frac{1}{r^{2}} \deriv{}{r} \left( r^{2} \deriv{\theta_{i}}{r} \right) = - \frac{1}{A_{i}} \theta_{i}^{n_{i}},\]

where


\[A_{i} \equiv \frac{(n_{i} + 1) P_{i,0}}{4 \pi G \rho_{i,0}^{2}}.\]

A change of variables to the polytropic independent variable \(z
\equiv A_{1}^{-1/2} r\) results in the dimensionless form


(20)\[\frac{1}{z^{2}} \deriv{}{z} \left( z^{2} \deriv{\theta_{i}}{z} \right) = - B_{i} \theta_{i}^{n_{i}},\]

where \(B_{i} \equiv A_{1}/A_{i}\). This can be regarded as a
generalization of the usual Lane-Emden equation [https://en.wikipedia.org/wiki/Lane%E2%80%93Emden_equation] to composite polytropes.



Continuity Relations

At the boundary between adjacent regions, the pressure and interior
mass must be continuous. If \(z_{i-1/2}\) denotes the coordinate
of the boundary between the \(i-1\) and \(i\) regions, then
these continuity relations are expressed as


\[\begin{split}\left.
\begin{gathered}
B_{i} = \frac{n_{i-1} + 1}{n_{i} + 1} \frac{\theta_{i}^{n_{i}+1}}{\theta_{i-1}^{n_{i-1}+1}} \frac{\rho_{i,0}^{2}}{\rho_{i-1,0}^{2}} \, B_{i-1}, \\
\theta'_{i} = \frac{n_{i-1} + 1}{n_{i} + 1} \frac{\theta_{i-1}^{n_{i-1}+1}}{\theta_{i}^{n_{i}+1}} \frac{\rho_{i,0}}{\rho_{i-1,0}} \, \theta'_{i-1},
\end{gathered}
\right\} \quad \text{at} \ z = z_{i-1/2}\end{split}\]

respectively.





            

          

      

      

    

  

    
      
          
            
  
Solution Method


Specification

The structure of a composite polytrope is specified completely by


	a set of \(\nreg\) polytropic indices \(n_{i}\)


	a set of \(\nreg-1\) boundary coordinates \(z_{i-1/2}\)


	a set of \(\nreg\) density jumps \(\Delta_{i-1/2} \equiv \ln [\rho_{i}(z_{i-1/2})/\rho_{i-1}(z_{i-1/2}]\)




Although the normalizing densities \(\rho_{i,0}\) have so far
been left unspecified, it’s convenient to choose them as the density
at the beginning of their respective regions.



Solution

The structure equations may be solved as
an initial value problem. In the first region (\(i=1\)) this IVP
involves integrating the Lane-Emden equation 20 from the
center \(z=0\) to the first boundary \(z=z_{3/2}\), with the
initial conditions


\[\begin{split}\left.
\begin{gathered}
\theta_{i} = 1, \\
\theta'_{i} = 0, \\
B_{1} = 1, \\
t_{1} = 1
\end{gathered}
\right\} \quad \text{at}\ z=0\end{split}\]

(here, \(t_{i} \equiv \rho_{i,0}/\rho_{1,0}\)).

The IVP in the intermediate regions (\(i = 2,\ldots,\nreg-1\))
involves integrating from \(z=z_{i-1/2}\) to \(z=z_{i+1/2}\),
with initial conditions established from the preceding region via


\[\begin{split}\left.
\begin{gathered}
\theta_{i} = 1, \\
\theta'_{i} = \frac{n_{i-1} + 1}{n_{i} + 1} \frac{\theta_{i-1}^{n_{i-1}+1}}{\theta_{i}^{n_{i}+1}} \frac{t_{i}}{t_{i-1}} \, \theta'_{i-1}, \\
B_{i} = \frac{n_{i-1} + 1}{n_{i} + 1} \frac{\theta_{i}^{n_{i}+1}}{\theta_{i-1}^{n_{i-1}+1}} \frac{t_{i}^{2}}{t_{i-1}^{2}} \, B_{i-1}, \\
\ln t_{i} = \ln t_{i-1} + n_{i-1} \ln \theta_{i-1} - n_{i} \ln \theta_{i} + \Delta_{i-1/2}.
\end{gathered}
\right\} \quad \text{at}\ z=z_{i-1/2}\end{split}\]

The IVP in the final region (\(i=\nreg\)) involves integrating
from \(z_{\nreg-1/2}\) until \(\theta_{\nreg} = 0\). This
point defines the stellar surface, \(z=z_{\rm s}\). For some
choices of \(n_{i}\), \(z_{i-1/2}\) and/or
\(\Delta_{i-1/2}\), the point \(\theta=0\) can arise in an
earlier region \(i = \nreg_{\rm t} < \nreg\); in such cases, the
model specification must be truncated to \(\nreg_{\rm t}\)
regions.





            

          

      

      

    

  

    
      
          
            
  
Physical Variables

Once the Lane-Emden equation 20 has been solved, the density in each
region can be evaluated by


\[\rho_{i} = \rho_{1,0} \, t_{i} \, \theta_{i}^{n_{i}}.\]

The pressure then follows from the equation-of-state
19 as


\[P_{i} = P_{1,0} \, \frac{n_{1}+1}{n_{i}+1} \, \frac{t_{i}^{2}}{B_{i}} \, \theta_{i}^{n_{i}+1}.\]

The interior mass \(m\) is evaluated by introducing the auxiliary
quantity \(\mu\), which is defined in the first region by


\[\mu_{1}(z) = - z^{2} \theta'_{1} (z),\]

and in subsequent regions by


\[\mu_{i}(z) = \mu_{i-1}(z_{i-1/2}) - \frac{t_{i}}{B_{i}} \left[ z^{2} \theta'_{i} (z) - z_{i-1/2}^{2} \theta'_{i} (z_{i-1/2}) \right].\]

The interior mass then follows as


\[M_{r} = M \frac{\mu_{i}}{\mu_{\rm s}},\]

where \(\mu_{\rm s} \equiv \mu_{\nreg}(z_{\rm s})\).




            

          

      

      

    

  

    
      
          
            
  
Structure Coefficients

The structure coefficients for composite
polytropic models are evaluated using


\[\begin{split}\begin{gathered}
V_{2} = -(n_{i} + 1) \frac{z_{\rm s}^{2}}{z} \frac{\theta'_{i}}{\theta_{i}}, \qquad
\As = V_{2} \frac{z^{2}}{z_{\rm s}^{2}}\left( \frac{n_{i}}{n_{i} + 1} - \frac{1}{\Gamma_{1}} \right), \\
U = \frac{t_{i} z^{3}}{\mu_{i}} \theta_{i}^{n_{i}}, \qquad
c_1 = \frac{z^{3}}{z_{\rm s}^{3}} \frac{\mu_{\rm s}}{\mu_{i}},
\end{gathered}\end{split}\]

where \(\mu\) is the auxiliary mass variable introduced above.




            

          

      

      

    

  

    
      
          
            
  
Building POLY Models

This appendix describes the build_poly executable, which
builds a composite polytropic stellar model and writes it to a file in
the POLY format.



	Installation

	Example Walkthrough: Simple Polytrope
	Assembling a Namelist File

	Running build_poly
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Installation

The build_poly executable is automatically compiled when
GYRE is built, and installed in the $GYRE_DIR/bin directory
(see the main Installation chapter).




            

          

      

      

    

  

    
      
          
            
  
Example Walkthrough: Simple Polytrope

As the first example of build_poly in action, let’s build a
simple (i.e., single-region) \(n=3\) polytrope, that for instance
describes the structure of a radiation-pressure dominated, fully
convective star.


Assembling a Namelist File

First, let’s assemble a namelist file containing the various
parameters which control a build_poly run.  Using a text
editor, create the file build_poly.simple.in with the
following content cut-and-pasted in:

&poly
	n_poly = 3.0  ! Polytropic index of single region
/

&num
	dz = 1E-2     ! Radial spacing of points
	toler = 1E-10 ! Tolerance of integrator
/

&out
	file = 'poly.simple.h5' ! Name of output file
/





Detailed information on the namelist groups expected in
build_poly input files can be found in the
Input Files section. Here, let’s briefly narrate the
parameters appearing in the file above:


	In the &poly namelist group, the n_poly parameter
sets the polytropic index.


	In the &num namelist group, the dz parameter sets
the radial spacing of points, and the toler parameter sets
the tolerance of the numerical integrator.


	In the &output namelist group, the file parameter
sets the name of the output file.






Running build_poly

To run build_poly, use the command

$GYRE_DIR/bin/build_poly build_poly.simple.in



There is no screen output produced during the run, but at the end the
poly.simple.h5 will be written to disk. This file, which is in
POLY format, can be used as the input stellar
model in a GYRE calculation; but it can also be explored in Python
(see Fig. 12) using the read_model function from
PyGYRE [https://github.com/rhdtownsend/pygyre].


[image: Plot showing the structure of the simple polytrope model]
Fig. 12 Plot of the Lane-Emden solution variable \(\theta\), density
\(\rho\), pressure \(P\) and interior mass \(M_{r}\) as a
function of radial coordinate, for the simple
polytrope. (Source)







            

          

      

      

    

  

    
      
          
            
  
Example Walkthrough: Composite Polytrope

As the second example of build_poly in action, let’s build
a two-region composite polytrope. The polytropic index is \(n=3\)
in the inner region, and \(n=1.5\) in the outer region. At the
boundary between the regions, located at radial coordinate
\(z=1.4\), the logarithmic density jump is \(\Delta = -0.5\).


Assembling a Namelist File

Using a text editor, create the file build_poly.composite.in with
the following content cut-and-pasted in:

&poly
	n_r = 2           ! Number of regions
	n_poly = 3.0, 1.5 ! Polytropic indices of regions
        z_b = 1.4         ! Radial coordinate of region boundaries
        Delta_b = -0.5    ! Logarithmic density jump at region boundaries
/

&num
	dz = 1E-2     ! Radial spacing of points
	toler = 1E-10 ! Tolerance of integrator
/

&out
	file = 'poly.composite.h5' ! Name of output file
/





Again, detailed information on the namelist groups expected in
build_poly input files can be found in the
Input Files section. Here, let’s briefly narrate the
parameters appearing in the file above:


	In the &poly namelist group, the n_r parameter sets
the number of regions; the n_poly parameter sets the
polytropic indices in the two regions; the z_b sets the
radial coordinate of the boundary between the regions; and the
Delta_b sets the density jump at this boundary.


	In the &num namelist group, the dz parameter sets
the radial spacing of points, and the toler parameter sets
the tolerance of the numerical integrator.


	In the &output namelist group, the file parameter
sets the name of the output file.






Running build_poly

As before, to run build_poly use the command

$GYRE_DIR/bin/build_poly build_poly.composite.in



There is no screen output produced during the run, but at the end the
poly.composite.h5 will be written to disk. This file, which is in
POLY format, can be used as the input stellar
model in a GYRE calculation; but it can also be explored in Python
(see Fig. 13) using the read_model function from
PyGYRE [https://github.com/rhdtownsend/pygyre].


[image: Plot showing the structure of the simple polytrope model]
Fig. 13 Plot of the Lane-Emden solution variable \(\theta\), density
\(\rho\), pressure \(P\) and interior mass \(M_{r}\) as a
function of radial coordinate, for the composite polytrope. Note
the density discontinuity, and the associated discontinuities in
the gradients of the pressure and interior mass. (Source)







            

          

      

      

    

  

    
      
          
            
  
Input Files

The build_poly executable reads parameters from an input
file that defines a number of Fortran namelist groups, as described
below.


Polytrope Parameters

The &poly namelist group defines polytrope parameters; the
input file can contain only one. Allowable parameters are:


	n_r (default 1)
	Number of regions



	n_poly (default 0)
	Comma-separated list of length n_r, specifying polytropic indices for regions



	z_b
	Comma-separated list of length n_r-1, specifying radial coordinates of boundaries
between regions



	Delta_b
	Comma-separated list of length n_r-1, specifying logarithmic density jumps at boundaries
between regions



	Gamma_1 (default 5./3.)
	First adiabatic exponent







Numerical Parameters

The &num namelist group defines numerical parameters; the
input file can contain only one. Allowable parameters are:


	dz (default 1E-2)
	Spacing of grid points in polytropic radial coordinate \(z\)



	toler (default 1E-10)
	Relative and absolute tolerance of Lane-Emden integrations







Output Parameters

The &out namelist group defines output parameters; the
input file can contain only one. Allowable parameters are:


	file
	Name of POLY-format file to write to









            

          

      

      

    

  

    
      
          
            
  
Evaluating Tidal Eigenvalues

This appendix describes the eval_lambda executable, which
evaluates the eigenvalue \(\lambda\) appearing in Laplace’s tidal
equations (see the Rotation Effects section). This executable is
used for the calculations presented in Townsend (2020) [https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2670T/abstract].


Installation

eval_lambda is automatically compiled when GYRE is built,
and installed in the $GYRE_DIR/bin directory (see the main
Installation chapter).



Running

Unlike most other GYRE executables, the parameters for
eval_lambda are supplied directly on the command line, with
the syntax

./eval_lambda l m q_min q_max n_q log_q rossby filename



This evaluates \(\lambda\) for harmonic degree \(\ell\) and
azimuthal order \(m\) on a grid
\(\{q_{1},q_{2},\ldots,q_{N}\}\) in the spin parameter, writing
the results to the file filename. If the flag log_q
has the value T then the grid is logarithmically spaced:


\[q_{i} = 10^{(1 - w_{i}) \log q_{\rm min} + w_{i} \log q_{\rm max}},\]

where


\[w_{i} \equiv \frac{i-1}{N-1}.\]

Alternatively, if log_q has the value F, then the grid
is linearly spaced:


\[q_{i} = (1 - w_{i}) q_{\rm min} + w_{i} q_{\rm max}.\]

As a special case, when \(n_{q}=1\), \(q_{\rm min}\) and
\(q_{\rm max}\) must match, and the single \(q\) point is set
to equal them.

If the flag rossby has the value T, then the Rossby
\(\lambda\) family is evaluated; otherwise, the gravito-acoustic
family is evaluated.

The table below summarizes the mapping between the user-definable
controls appearing in the expressions above, and the corresponding
command-line parameters:







	Symbol

	Parameter





	\(\ell\)

	l



	\(m\)

	m



	\(q_{\rm min}\)

	q_min



	\(q_{\rm max}\)

	q_max



	\(N\)

	n_q








Interpreting Output

The output file created by eval_lambda is in GYRE’s
HDF Format, with the following data:


	l (integer scalar)
	Harmonic degree \(\ell\)



	k (integer scalar)
	Meridional order \(k\) (see Townsend, 2003a [https://ui.adsabs.harvard.edu/abs/2003MNRAS.340.1020T/abstract])



	m (integer scalar)
	Azimuthal order \(m\)



	rossby (logical scalar)
	Rossby family flag



	q (real array)
	Spin parameter \(q\)



	lambda (real array)
	Eigenvalue \(\lambda\)
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