Detail Files

The data written to a detail file are controlled by the detail_item_list parameter of the &ad_output namelist group (for adiabatic calculations) and the &nad_output namelist group (for nonadiabatic calculations). This parameter is a comma-separated list of items to appear in the summary file; the following subsections describe the items that may appear, grouped together by functional area. For each item, the corresponding math symbol is given (if there is one), together with the datatype, and a brief description. Units (where applicable) are indicated in brackets [].

Solution Data

Item

Symbol

Datatype

Description

n

\(N\)

integer

number of spatial grid points

omega

\(\omega\)

complex

dimensionless eigenfrequency

x

\(x\)

real(n)

independent variable; defined in Variables section

y_1

\(y_{1}\)

complex(n)

dependent variable; defined in Variables section

y_2

\(y_{2}\)

complex(n)

dependent variable; defined in Variables section

y_3

\(y_{3}\)

complex(n)

dependent variable; defined in Variables section

y_4

\(y_{4}\)

complex(n)

dependent variable; defined in Variables section

y_5

\(y_{5}\)

complex(n)

dependent variable; defined in Variables section

y_6

\(y_{6}\)

complex(n)

dependent variable; defined in Variables section

Observables

Item

Symbol

Datatype

Description

freq

complex

dimensioned frequency; units and reference frame controlled by freq_units and freq_frame parameters

freq_units

string

freq_units parameter

freq_frame

string

freq_frame parameter

f_T

\(f_{T}\)

real

Effective temperature perturbation amplitude; evaluated using eqn. 5 of Dupret et al. (2003)

f_g

\(f_{\rm g}\)

real

Effective gravity perturbation amplitude; evaluated using eqn. 6 of Dupret et al. (2003)

psi_T

\(\psi_{T}\)

real

Effective temperature perturbation phase; evaluated using eqn. 5 of Dupret et al. (2003)

f_g

\(\psi_{\rm g}\)

real

Effective gravity perturbation phase; evaluated using eqn. 6 of Dupret et al. (2003)

Classification & Validation

Item

Symbol

Datatype

Description

j

\(j\)

integer

unique mode index

l

\(\ell\)

integer

harmonic degree

l_i

\(\ell_{\rm i}\)

complex

effective harmonic degree at inner boundary

m

\(m\)

integer

azimuthal order

n_p

\(\np\)

integer

acoustic-wave winding number

n_g

\(\ng\)

integer

gravity-wave winding number

n_pg

\(\npg\)

integer

radial order within the Eckart-Scuflaire-Osaki-Takata scheme (see Takata, 2006b)

omega_int

\(\omega_{\rm int}\)

complex

dimensionless eigenfrequency; evaluated by integrating \(\sderiv{\zeta}{x}\)

dzeta_dx

\(\sderiv{\zeta}{x}\)

complex(n)

dimensionless frequency weight function; controlled by zeta_scheme parameter

Yt_1

\(\mathcal{Y}_{1}\)

complex(n)

primary eigenfunction for Takata classification; evaluated using a rescaled eqn. 69 of Takata (2006b)

Yt_2

\(\mathcal{Y}_{2}\)

complex(n)

secondary eigenfunction for Takata classification; evaluated using a rescaled eqn. 70 of Takata (2006b)

I_0

\(I_{0}\)

complex(n)

first integral for radial modes; evaluated using eqn. 42 of Takata (2006a)

I_1

\(I_{1}\)

complex(n)

first integral for dipole modes; evaluated using eqn. 43 of Takata (2006a)

prop_type

\(\varpi\)

integer(n)

propagation type; \(\varpi = 1\) in acoustic-wave regions, \(\varpi=-1\) in gravity-wave regions, and \(\varpi=0\) in evanescent regions

Perturbations

Item

Symbol

Datatype

Description

x_ref

\(x_{\rm ref}\)

real

fractional radius of reference location

xi_r_ref

\(\txi_{r,{\rm ref}}\)

complex

radial displacement perturbation at reference location [\(R\)]

xi_h_ref

\(\txi_{\rm h,ref}\)

complex

radial displacement perturbation at reference location [\(R\)]

eul_phi_ref

\(\tPhi'_{\rm ref}\)

complex

Eulerian potential perturbation at reference location [\(GM/R\)]

deul_phi_ref

\((\sderiv{\tPhi'}{x})_{\rm ref}\)

complex

Eulerian potential gradient perturbation at reference location [\(GM/R^{2}\)]

lag_S_ref

\(\delta\tS_{\rm ref}\)

complex

Lagrangian specific entropy perturbation at reference location [\(R\)]

lag_L_ref

\(\delta\tL_{\rm R,ref}\)

complex

Lagrangian radiative luminosity perturbation at reference location [\(L\)]

xi_r

\(\txir\)

complex

radial displacement perturbation [\(R\)]

xi_h

\(\txih\)

complex

radial displacement perturbation [\(R\)]

eul_phi

\(\tPhi'\)

complex

Eulerian potential perturbation [\(GM/R\)]

deul_phi

\(\sderiv{\tPhi'}{x}\)

complex

Eulerian potential gradient perturbation [\(GM/R^{2}\)]

lag_S

\(\delta\tS\)

complex

Lagrangian specific entropy perturbation [\(\cP\)]

lag_L

\(\delta\tLrad\)

complex

Lagrangian radiative luminosity perturbation [\(L\)]

eul_P

\(\tP'\)

complex

Eulerian total pressure perturbation [\(P\)]

eul_rho

\(\trho'\)

complex

Eulerian density perturbation [\(\rho\)]

eul_T

\(\tT'\)

complex

Eulerian temperature perturbation [\(T\)]

lag_P

\(\delta\tP\)

complex

Lagrangian total pressure perturbation [\(P\)]

lag_rho

\(\delta\trho\)

complex

Lagrangian density perturbation [\(\rho\)]

lag_T

\(\delta\tT\)

complex

Lagrangian temperature perturbation [\(T\)]

Energetics & Transport

Item

Symbol

Datatype

Description

eta

\(\eta\)

real

normalized growth rate \(\eta\); evaluated using expression in text of page 1186 of Stellingwerf (1978)

E

\(E\)

real

mode inertia [\(M R^{2}\)]; evaluated by integrating \(\sderiv{E}{x}\)

E_p

\(E_{\rm p}\)

real

acoustic mode inertia [\(M R^{2}\)]; evaluated by integrating \(\sderiv{E}{x}\) where \(\varpi=1\)

E_g

\(E_{\rm g}\)

real

gravity mode inertia [\(M R^{2}\)]; evaluated by integrating \(\sderiv{E}{x}\) in regions where \(\varpi=-1\)

E_norm

\(E_{\rm norm}\)

real

normalized inertia; evaluation controlled by inertia_norm parameter

E_ratio

real

ratio of mode inertias inertia inside/outside reference location

H

\(H\)

real

mode energy [\(G M^{2}/R\)]; evaluated as \(\frac{1}{2} \omega^{2} E\)

W

\(W\)

real

mode work [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{W}{x}\)

W_eps

\(W_{\epsilon}\)

real

mode work [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{W_{\epsilon}}{x}\)

tau_ss

\(\tau_{\rm ss}\)

real

steady-state torque [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{\tau_{\rm ss}}{x}\)

tau_tr

\(\tau_{\rm tr}\)

real

steady-state torque [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{\tau_{\rm tr}}{x}\)

dE_dx

\(\sderiv{E}{x}\)

real(n)

differential inertia [\(M R^{2}\)]; evaluated using eqn. 3.139 of Aerts et al. (2010)

dW_dx1

\(\sderiv{W}{x}\)

real(n)

differential work [\(GM^{2}/R\)]; evaluated using eqn. 25.9 of Unno et al. (1989)

dW_eps_dx1

\(\sderiv{W_{\epsilon}}{x}\)

real(n)

differential nuclear work [\(GM^{2}/R\)]; evaluated using eqn. 25.9 of Unno et al. (1989)

dtau_ss_dx

\(\sderiv{\tau_{\rm ss}}{x}\)

real(n)

steady-state differential torque [G M^{2}/R]

dtau_tr_dx

\(\sderiv{\tau_{\rm tr}}{x}\)

real(n)

transient differential torque [G M^{2}/R]

alpha_0

\(\alpha_{0}\)

real(n)

excitation coefficient; evaluated using eqn. 26.10 of Unno et al. (1989)

alpha_1

\(\alpha_{1}\)

real(n)

excitation coefficient; evaluated using eqn. 26.12 of Unno et al. (1989)

Rotation

Item

Symbol

Datatype

Description

domega_rot

\(\delta \omega\)

real

dimensionless first-order rotational splitting; evaluated using eqn. 3.355 of Aerts et al. (2010)

dfreq_rot

real

dimensioned first-order rotational splitting; units and reference frame controlled by freq_units and freq_frame parameters

beta

\(\beta\)

real

rotation splitting coefficient; evaluated by integrating \(\sderiv{\beta}{x}\)

dbeta_dx

\(\sderiv{\beta}{x}\)

complex(n)

unnormalized rotation splitting kernel; evaluated using eqn. 3.357 of Aerts et al. (2010)

lambda

\(\lambda\)

complex(n)

tidal equation eigenvalue

Stellar Structure

Item

Symbol

Datatype

Description

M_star2

\(M\)

real

stellar mass [\(\gram\)]

R_star2

\(R\)

real

stellar radius [\(\cm\)]

L_star2

\(L\)

real

stellar luminosity [\(\erg\,\second^{-1}\)]

Delta_p

\(\Delta \nu\)

real

asymptotic p-mode large frequency separation [\(\sqrt{GM/R^{3}}\)]

Delta_g

\((\Delta P)^{-1}\)

real

asymptotic g-mode inverse period separation [\(\sqrt{GM/R^{3}}\)]

V_2

\(V_2\)

real(n)

structure coefficient; defined in Structure Coefficients section

As

\(A^{*}\)

real(n)

structure coefficient; defined in Structure Coefficients section

U

\(U\)

real(n)

structure coefficient; defined in Structure Coefficients section

c_1

\(c_{1}\)

real(n)

structure coefficient; defined in Structure Coefficients section

Gamma_1

\(\Gammi\)

real(n)

adiabatic exponent; defined in Linearized Equations section

nabla1

\(\nabla\)

real(n)

temperature gradient; defined in Structure Coefficients section Dimensionless Formulation section

nabla_ad1

\(\nabad\)

real(n)

adiabatic temperature gradient; defined in Linearized Equations section

dnabla_ad1

\(\dnabad\)

real(n)

derivative of adiabatic temperature gradient

upsilon_T1

\(\upsT\)

real(n)

thermodynamic coefficient; defined in Linearized Equations section

c_lum1

\(\clum\)

real(n)

structure coefficient; defined in Structure Coefficients section

c_rad1

\(\crad\)

real(n)

structure coefficient; defined in Structure Coefficients section

c_thn1

\(\cthn\)

real(n)

structure coefficient; defined in Structure Coefficients section

c_thk1

\(\cthk\)

real(n)

structure coefficient; defined in Structure Coefficients section

c_eps1

\(\ceps\)

real(n)

structure coefficient; defined in Structure Coefficients section

kap_rho1

\(\kaprho\)

real(n)

opacity partial; defined in Linearized Equations section

kap_T1

\(\kapT\)

real(n)

opacity partial; defined in Linearized Equations section

eps_rho1

\(\epsrho\)

real(n)

nuclear energy generation partial; defined in Linearized Equations section

eps_T1

\(\epsT\)

real(n)

nuclear energy generation partial; defined in Linearized Equations section

Omega_rot

\(\Omega\)

real(n)

rotation angular frequency [\(\sqrt{GM/R^{3}}\)]

M_r2

\(M_r\)

real(n)

interior mass [\(\gram\)]

P2

\(P\)

real(n)

total pressure [\(\barye\)]

rho2

\(\rho\)

real(n)

density [\(\gram\,\cm^{-3}\)]

T2

\(T\)

real(n)

temperature [\(\kelvin\)]

Footnotes

1(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

This option is available only for stellar models with N capability

2(1,2,3,4,5,6,7)

This option is available only for stellar models with D capability