# Detail Files¶

A detail file gathers together information about a single mode found during a GYRE run. The data written to a detail file is controlled by the detail_item_list parameter of the &ad_output namelist group (for adiabatic calculations) and the &nad_output namelist group (for nonadiabatic calculations). This parameter is a comma-separated list of items to appear in the detail files. The items come in two flavors:

• scalar items comprise a single value, typically pertaining either to the star as a whole (i.e., a global quantity) or to a specific location in the star
• array items comprise a sequence of values, with each value pertaining to a single point in the discrete grid used to solve the oscillation equations. The sequence runs from the inner boundary to the outer boundary

The following subsections describe the items that may appear in a detail_item_list parameter, grouped together by functional area.

## Solution Data¶

n (integer scalar)
Number of grid points $$n$$
x (real array)
Fractional radius $$x \equiv r/R$$
y_1 (complex array)
Solution variable $$y_{1}$$, defined in equations.pdf
y_2 (complex array)
Solution variable $$y_{2}$$, defined in equations.pdf
y_3 (complex array)
Solution variable $$y_{3}$$, defined in equations.pdf
y_4 (complex array)
Solution variable $$y_{4}$$, defined in equations.pdf
y_5 (complex array)
Solution variable $$y_{5}$$, defined in equations.pdf
y_6 (complex array)
Solution variable $$y_{6}$$, defined in equations.pdf
omega (complex scalar)
Dimensionless eigenfrequency $$\omega$$

## Observables¶

freq (complex scalar)
Dimensioned eigenfrequency. The units and reference frame are controlled by freq_units and freq_frame parameters of the &ad_output and &nad_output namelist groups
freq_units (character scalar)
Units of freq
freq_frame (character scalar)
Reference frame of freq
f_T (real scalar)
Effective temperature perturbation amplitude $$f_{\rm T}$$. Evaluated using eqn. 5 of Dupret et al. (2003)
f_g (real scalar)
Effective gravity perturbation amplitude $$f_{\rm g}$$. Evaluated using eqn. 6 of Dupret et al. (2003)
psi_T (real scalar)
Effective temperature perturbation phase $$\psi_{\rm T}$$. Evaluated using eqn. 5 of Dupret et al. (2003)
psi_g (real scalar)
Effective gravity perturbation phase $$\psi_{\rm g}$$

## Classification & Validation¶

j (integer scalar)
Unique mode index $$j$$. The first mode found during the GYRE run has $$j=1$$, the second $$j=2$$, and so on
l (integer scalar)
Harmonic degree $$\ell$$
l_i (complex scalar)
Effective harmonic degree at inner boundary $$\ell_{\rm i}$$
m (integer scalar)
Azimuthal order $$m$$
n_p (integer scalar)
Acoustic-wave winding number $$n_{\rm p}$$
n_g (integer scalar)
Gravity-wave winding number $$n_{\rm g}$$
n_pg (integer scalar)
Radial order $$n_{\rm pg}$$ within the Eckart-Scuflaire-Osaki-Takata scheme (see Takata, 2006)
omega_int (complex scalar)
Dimensionless eigenfrequency $$\omega$$ from integral expression. Evaluated using eqn. 1.71 of Marc-Antoine’s Dupret’s PhD thesis
Yt_1 (complex array)
Primary eigenfunction for Takata classification $$\mathcal{Y}_{1}$$. Evaluated using a rescaled eqn. 69 of Takata (2006)
Yt_2 (complex array)
Secondary eigenfunction for Takata classification $$\mathcal{Y}_{2}$$. Evaluated using a rescaled eqn. 70 of Takata (2006)
I_0 (complex array)
First integral for radial modes $$I_{0}$$. Evaluated using eqn. 42 of Takata (2006)
I_1 (complex array)
First integral for dipole modes $$I_{1}$$. Evaluated using eqn. 43 of Takata (2006)
prop_type (complex array)
Propagation type $$\varpi$$ based on local dispersion relation. $$\varpi = 1$$ in acoustic-wave regions, $$\varpi=-1$$ in gravity-wave regions, and $$\varpi=0$$ in evanescent regions

## Perturbations¶

x_ref (real scalar)
Fractional radius of reference location $$x_{\rm ref}$$
xi_r_ref (complex scalar)
Radial displacement perturbation $$\xi_{\rm r}$$ at reference location $$x_{\rm ref}$$, in units of $$R$$
xi_h_ref (complex scalar)
Horizontal displacement perturbation $$\xi_{\rm h}$$ at reference location $$x_{\rm ref}$$, in units of $$R$$
eul_phi_ref (complex scalar)
Eulerian potential perturbation $$\Phi'$$ at reference location $$x_{\rm ref}$$, in units of $$G M/R$$
deul_phi_ref (complex scalar)
Eulerian potential gradient perturbation $${\rm d}\Phi'/{\rm d}x$$ at reference location $$x_{\rm ref}$$, in units of $$G M/R^{2}$$
lag_S_ref (complex scalar)
Lagrangian specific entropy perturbation $$\delta S$$ at reference location $$x_{\rm ref}$$, in units of $$c_{P}$$
lag_L_ref (complex scalar)
Lagrangian radiative luminosity perturbation $$\delta L_{r,{\rm R}}$$ at reference location $$x_{\rm ref}$$, in units of $$L$$
xi_r (complex array)
Radial displacement perturbation $$\xi_{\rm r}$$, in units of $$R$$
xi_h (complex array)
Horizontal displacement perturbation $$\xi_{\rm h}$$, in units of $$R$$
eul_phi (complex array)
Eulerian potential perturbation $$\Phi'$$, in units of $$G M/R$$
deul_phi (complex array)
Eulerian potential gradient perturbation $${\rm d}\Phi'/{\rm d}x$$, in units of $$G M/R^{2}$$
lag_S (complex array)
Lagrangian specific entropy perturbation $$\delta S$$, in units of $$c_{P}$$
lag_L (complex array)
Lagrangian radiative luminosity peturbation $$\delta L_{r,{\rm R}}$$, in units of $$L$$
eul_P (complex array)
Eulerian total pressure perturbation $$P'$$, in units of $$P$$
eul_rho (complex array)
Eulerian density perturbation $$\rho'$$, in units of $$\rho$$
eul_T (complex array)
Eulerian temperature perturbation $$T'$$, in units of $$T$$
lag_P (complex array)
Lagrangian total pressure perturbation $$\delta P$$, in units of $$P$$
lag_rho (complex array)
Lagrangian density perturbation $$\delta \rho$$, in units of $$\rho$$
lag_T (complex array)
Lagrangian temperature perturbation $$\delta T$$, in units of $$T$$

## Energetics & Transport¶

eta (real scalar)
Normalized growth rate $$\eta$$. Evaluated using expression in text of page 1186 of Stellingwerf (1978)
E : (real scalar)
Mode inertia $$E$$, in units of $$M R^{2}$$. Evaluated by integrating $${\rm d}E/{\rm d}x$$
E_p (real scalar)
Acoustic inertia $$E_{\rm p}$$, in units of $$M R^{2}$$. Evaluated by integrating $${\rm d}E/{\rm d}x$$ in acoustic-wave propagation regions
E_g (real scalar)
Gravity inertia $$E_{\rm g}$$, in units of $$M R^{2}$$. Evaluated by integrating $${\rm d}E/{\rm d}x$$ in gravity-wave propagation regions
E_norm (real scalar)
Normalized inertia $$E_{\rm norm}$$. The normalization is controlled by the inertia_norm parameter of the &osc namelist group
E_ratio (real scalar)
Ratio of mode inertia inside/outside the reference location $$x_{\rm ref}$$
H (real scalar)
Mode energy $$H$$, in units of $$G M^{2}/R$$
W (real scalar)
Mode work $$W$$, in units of $$G M^{2}/R$$. Evaluated by integrating $${\rm d}W/{\rm d}x$$
W_eps (real scalar)
Mode nuclear work $$W_{\epsilon}$$, in units of $$G M^{2}/R$$. Evaluated by integrating $${\rm d}W_{\epsilon}/{\rm d}x$$
tau_ss (real scalar)
Steady-state mode torque $$\tau_{\rm ss}$$, in units of $$G M^{2}/R$$. Evaluated by integrating $${\rm d}\tau_{\rm ss}/{\rm d}x$$
tau_tr (real scalar)
Transient total mode torque $$\tau_{\rm tr}$$, in units of $$G M^{2}/R$$. Evaluated by integrating $${\rm d}\tau_{\rm tr}/{\rm d}x$$
dE_dx (real array)
Differential inertia $${\rm d}E/{\rm d}x$$, in units of $$M R^{2}$$
dW_dx (real array)
Differential work $${\rm d}W/{\rm d}x$$, in units of $$G M^{2}/R$$. Evaluated using eqn. 25.9 of Unno et al. (1989)
dW_eps_dx (real array)
Differential nuclear work $${\rm d}W_{epsilon}/{\rm d}x$$, in units of $$G M^{2}/R$$. Evaluated using eqn. 25.9 of Unno et al. (1989)
dtau_dx_ss (real array)
Steady-state differential torque $${\rm d}\tau_{\rm ss}/{\rm d}x$$, in units of $$G M^{2}/R$$
dtau_dx_tr (real array)
Transient differential torque $${\rm d}\tau_{\rm tr}/{\rm d}x$$, in units of $$G M^{2}/R$$
alpha_0 (real array)
Excitation coefficient $$\alpha_{0}$$. Evaluated using eqn. 26.10 of Unno et al. (1989)
alpha_1 (real array)
Excitation coefficient $$\alpha_{1}$$. Evaluated using eqn. 26.12 of Unno et al. (1989)

## Rotation¶

beta (real scalar)
Rotation splitting coefficient $$\beta$$. Evaluated by integrating $${\rm d}\beta/{\rm d}x$$
dbeta_dx (real array)
Unnormalized rotation splitting kernel $${\rm d}\beta/{\rm d}x$$. Evaluated using eqn. 3.357 of Aerts et al. (2010)
lambda (complex array)
Angular eigenvalue $$\lambda$$

## Stellar Structure¶

M_star (real scalar)
stellar mass, in units of $${\rm g}$$
R_star (real scalar)
stellar radius, in units of $${\rm cm}$$
L_star (real scalar)
stellar luminosity, in units of $${\rm erg\,s^{-1}}$$
Delta_p (real scalar)
Asymptotic p-mode large frequency separation $$\Delta \nu$$, in units of $$\sqrt{GM/R^{3}}$$
Delta_g (real scalar)
Asymptotic g-mode inverse period separation $$(\Delta P)^{-1}$$, in units of $$\sqrt{GM/R^{3}}$$
V_2 (real array)
Dimensionless structure coefficient $$V_{2}$$, defined in equations.pdf
As (real array)
Dimensionless structure coefficient $$A^{*}$$, defined in equations.pdf
U (real array)
Dimensionless structure coefficient $$U$$, defined in equations.pdf
c_1 (real array)
Dimensionless structure coefficient $$c_{1}$$, defined in equations.pdf
Gamma_1 (real array)
Adiabatic exponent $$\Gamma_{1}$$, equations.pdf
nabla (real array)
Dimensionless temperature gradient $$\nabla$$, defined in equations.pdf
nabla_ad (real array)
Adiabatic tempertature gradient $$\nabla_{\rm ad}$$, defined in equations.pdf
dnabla_ad (real array)
Dimensionless gradient $$\partial \nabla_{\rm ad}$$, defined in equations.pdf
delta (real array)
Thermodynamic coefficient $$\delta$$, defined in equations.pdf
c_lum (real array)
Dimensionless structure coefficient $$c_{\rm lum}$$, defined in equations.pdf
c_rad (real array)
Dimensionless structure coefficient $$c_{\rm rad}$$, defined in equations.pdf
c_thn (real array)
Dimensionless structure coefficient $$c_{\rm thn}$$, defined in equations.pdf
c_thk (real array)
Dimensionless structure coefficient $$c_{\rm thk}$$, defined in equations.pdf
c_eps (real array)
Dimensionless structure coefficient $$c_{\epsilon}$$, defined in equations.pdf
eps_rho (real array)
Energy generation partial $$\epsilon_{\rho}$$, defined in equations.pdf
eps_T (real array)
Energy generation partial $$\epsilon_{T}$$, defined in equations.pdf
kap_rho (real array)
Opacity partial $$\kappa_{\rho}$$, defined in equations.pdf
kap_T (real array)
Opacity partial $$\kappa_{T}$$, defined in equations.pdf
Omega_rot (real array)
Rotation angular frequency, in units of $$\sqrt{GM/R^{3}}$$
M_r (real array)
Mass coordinate, in units of $${\rm g}$$
P (real array)
Total pressure, in units of $${\rm dyn\,cm^{-2}}$$
rho (real array)
Density, in units of $${\rm g\,cm^{-3}}$$
T (real array)
Temperature, in units of $${\rm K}$$

Footnotes

  (1, 2, 3, 4, 5, 6, 7) This option is only available when model_type is 'EVOL'