Summary Files

The data written to summary files are controlled by the summary_item_list parameter of the &ad_output namelist group (for adiabatic calculations) and the &nad_output namelist group (for nonadiabatic calculations). This parameter is a comma-separated list of items to appear in the summary file; the following subsections describe the items that may appear, grouped together by functional area. For each item, the corresponding math symbol is given (if there is one), together with the datatype, and a brief description. Units (where applicable) are indicated in brackets [].

Solution Data

Item

Symbol

Datatype

Description

n_j

\(N_{j}\)

integer

number of modes found

omega

\(\omega\)

complex(n_j)

dimensionless eigenfrequency

Observables

Item

Symbol

Datatype

Description

freq

complex(n_j)

dimensioned frequency; units and reference frame controlled by freq_units and freq_frame parameters

freq_units

string

freq_units parameter

freq_frame

string

freq_frame parameter

f_T

\(f_{T}\)

real(n_j)

Effective temperature perturbation amplitude; evaluated using eqn. 5 of Dupret et al. (2003)

f_g

\(f_{\rm g}\)

real(n_j)

Effective gravity perturbation amplitude; evaluated using eqn. 6 of Dupret et al. (2003)

psi_T

\(\psi_{T}\)

real(n_j)

Effective temperature perturbation phase; evaluated using eqn. 5 of Dupret et al. (2003)

f_g

\(\psi_{\rm g}\)

real(n_j)

Effective gravity perturbation phase; evaluated using eqn. 6 of Dupret et al. (2003)

Classification & Validation

j

\(j\)

integer(n_j)

unique mode index

l

\(\ell\)

integer(n_j)

harmonic degree

l_i

\(\ell_{\rm i}\)

complex(n_j)

effective harmonic degree at inner boundary

m

\(m\)

integer(n_j)

azimuthal order

n_p

\(\np\)

integer(n_j)

acoustic-wave winding number

n_g

\(\ng\)

integer(n_j)

gravity-wave winding number

n_pg

\(\npg\)

integer(n_j)

radial order within the Eckart-Scuflaire-Osaki-Takata scheme (see Takata, 2006b)

omega_int

\(\omega_{\rm int}\)

complex(n_j)

dimensionless eigenfrequency; evaluated by integrating \(\sderiv{\zeta}{x}\)

Perturbations

Item

Symbol

Datatype

Description

x_ref

\(x_{\rm ref}\)

real

fractional radius of reference location

xi_r_ref

\(\txi_{r,{\rm ref}}\)

complex(n_j)

radial displacement perturbation at reference location [\(R\)]

eul_phi_ref

\(\tPhi'_{\rm ref}\)

complex(n_j)

Eulerian potential perturbation at reference location [\(GM/R\)]

deul_phi_ref

\((\sderiv{\tPhi'}{x})_{\rm ref}\)

complex(n_j)

Eulerian potential gradient perturbation at reference location [\(GM/R^{2}\)]

lag_S_ref

\(\delta\tS_{\rm ref}\)

complex(n_j)

Lagrangian specific entropy perturbation at reference location [\(R\)]

lag_L_ref

\(\delta\tL_{\rm R,ref}\)

complex(n_j)

Lagrangian radiative luminosity perturbation at reference location [\(L\)]

Energetics & Transport

Item

Symbol

Datatype

Description

eta1

\(\eta\)

real(n_j)

normalized growth rate \(\eta\); evaluated using expression in text of page 1186 of Stellingwerf (1978)

E

\(E\)

real(n_j)

mode inertia [\(M R^{2}\)]; evaluated by integrating \(\sderiv{E}{x}\)

E_p

\(E_{\rm p}\)

real(n_j)

acoustic mode inertia [\(M R^{2}\)]; evaluated by integrating \(\sderiv{E}{x}\) where \(\varpi=1\)

E_g

\(E_{\rm g}\)

real(n_j)

gravity mode inertia [\(M R^{2}\)]; evaluated by integrating \(\sderiv{E}{x}\) in regions wherre \(\varpi=-1\)

E_norm

\(E_{\rm norm}\)

real(n_j)

normalized inertia; evaluation controlled by inertia_norm parameter

E_ratio

real(n_j)

ratio of mode inertias inertia inside/outside reference location

H

\(H\)

real(n_j)

mode energy [\(G M^{2}/R\)]; evaluated as \(\frac{1}{2} \omega^{2} E\)

W1

\(W\)

real(n_j)

mode work [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{W}{x}\)

W_eps1

\(W_{\epsilon}\)

real(n_j)

mode work [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{W_{\epsilon}}{x}\)

tau_ss

\(\tau_{\rm ss}\)

real(n_j)

steady-state torque [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{\tau_{\rm ss}}{x}\)

tau_tr

\(\tau_{\rm tr}\)

real(n_j)

steady-state torque [\(G M^{2}/R\)]; evaluated by integrating \(\sderiv{\tau_{\rm tr}}{x}\)

Rotation

Item

Symbol

Datatype

Description

domega_rot

\(\delta \omega\)

real(n_j)

dimensionless first-order rotational splitting; evaluated using eqn. 3.355 of Aerts et al. (2010)

dfreq_rot

real(n_j)

dimensioned first-order rotational splitting; units and reference frame controlled by freq_units and freq_frame parameters

beta

\(\beta\)

real(n_j)

rotation splitting coefficient; evaluated by integrating \(\sderiv{\beta}{x}\)

Stellar Structure

Item

Symbol

Datatype

Description

M_star2

\(M\)

real(n_j)

stellar mass [\(\gram\)]

R_star2

\(R\)

real(n_j)

stellar radiua [\(\cm\)]

L_star2

\(L\)

real(n_j)

stellar luminosity [\(\erg\,\second^{-1}\)]

Delta_p

\(\Delta \nu\)

real(n_j)

asymptotic p-mode large frequency separation [\(\sqrt{GM/R^{3}}\)]

Delta_g

\((\Delta P)^{-1}\)

real(n_j)

asymptotic g-mode inverse period separation [\(\sqrt{GM/R^{3}}\)]

Footnotes

1(1,2,3)

This option is available only for stellar models with N capability

2(1,2,3)

This option is available only for stellar models with D capability